Cho các số nguyên a,b,c khác 0 thỏa mãn :ab+1 = c(a-b+c)
Tính giá trị của biểu thức A =\(\frac{2017a-b}{2017a+b}\) + \(\frac{2017b-a}{2017b+a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo bài tương tự này :
Câu hỏi của so yeoung cheing - Toán lớp 7 - Học toán với OnlineMath
Có vài cách giải nhưng mình thấy cách này nhanh và đẹp ne.
\(\sqrt{2017a+bc}=\sqrt{\left(a+b+c\right)a+bc}=\sqrt{a^2+ab+bc+ca}=\sqrt{\left(a+b\right)\left(c+a\right)}\le\sqrt{ac}+\sqrt{ab}\)
\(\Rightarrow\frac{a}{a+\sqrt{2017a+bc}}\le\frac{a}{a+\sqrt{ab}+\sqrt{bc}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự rồi cộng lại, ta được:
\(P\le\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)
Dấu "=" khi \(a=b=c=\frac{2017}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a+b-2017c}{c}=\frac{b+c-2017a}{a}=\frac{c+a-2017b}{b}\)
\(=\frac{a+b-2017c+b+c-2017a+c+a-2017b}{a+b+c}=\frac{-2015\left(a+b+c\right)}{a+b+c}=-2015\)
Do đó :
\(\frac{a+b-2017c}{c}=-2015\)\(\Leftrightarrow\)\(a+b=2c\) \(\left(1\right)\)
\(\frac{b+c-2017a}{a}=-2015\)\(\Leftrightarrow\)\(b+c=2a\) \(\left(2\right)\)
\(\frac{c+a-2017b}{b}=-2015\)\(\Leftrightarrow\)\(c+a=2b\) \(\left(3\right)\)
Thay (1), (2) và (3) vào \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}\) ta được :
\(B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy \(B=8\)
Chúc bạn học tốt ~
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{2017c-a-b}{c}=\frac{2017b-a-c}{b}=\frac{2017a-b-c}{a}=\frac{\left(2017c-a-b\right)+\left(2017b-a-c\right)+\left(2017a-b-c\right)}{a+b+c}=\frac{2015.\left(a+b+c\right)}{a+b+c}=2015\)
\(\frac{2017c-a-b}{c}=2015\)\(\Rightarrow2017c-a-b=2015c\)\(\Rightarrow2c=a+b\)( 1 )
\(\frac{2017b-a-c}{b}=2015\)\(\Rightarrow2017b-a-c=2015b\)\(\Rightarrow2b=a+c\)( 2 )
\(\frac{2017a-b-c}{a}=2015\)\(\Rightarrow2017a-b-c=2015a\)\(\Rightarrow2a=b+c\)( 3 )
Từ ( 1 ), ( 2 ) và ( 3 ) \(\Rightarrow a=b=c\)
Vậy A = \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right).\left(1+1\right).\left(1+1\right)=2^3=8\)
Ta có:
\(\frac{ab}{\sqrt{2017c+ab}}=\frac{ab}{\sqrt{\left(a+b+c\right)c+ab}}\)
\(=\frac{ab}{\sqrt{a\left(b+c\right)+c\left(b+c\right)}}=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
Áp dụng BĐT AM-GM (cô si): \(ab.\frac{1}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\frac{ab}{2}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{ab}{2\left(a+c\right)}+\frac{ab}{2\left(b+c\right)}\)
Tương tự với hai BĐT còn lại và cộng theo vế,ta được:
\(A\le\frac{ab}{2\left(a+c\right)}+\frac{ab}{2\left(b+c\right)}+\frac{bc}{2\left(a+b\right)}+\frac{bc}{2\left(a+c\right)}+\frac{ca}{2\left(b+c\right)}+\frac{ca}{2\left(a+b\right)}\)
Thu gọn lại bằng cách cộng những phân thức cùng mẫu và rút gọn phân thức,ta được:
\(A\le\frac{a+b+c}{2}=\frac{2017}{2}\).
Dấu "=" xảy ra khi \(a=b=c=\frac{2017}{3}\)
Vậy...