Cho năm số 1 ;2 ;3 ;4 được chia thành 2 nhóm bất kì . Chứng minh rằng một trong 2 nhóm luôn có 2 số mà hiệu của chúng bằng một số trong nhóm .
nhanh giúp mình cần gấp !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Gọi số thỏa mãn đề có dạng $\overline{abcd}$ với $a,b,c,d$ khác nhau.
Nếu $a=1$:
$b=2$ thì $(c,d)=(3,4), (4,3), (3,5),(5,3),(4,5)(5,4)$, tức là có 6 giá trị thỏa mãn
$b=3$ tương tự cũng có 6 giá trị thỏa mãn
$b=4$ tương tự cũng có 6 giá trị thỏa mãn
$b=5$ tương tự cũng có 6 giá trị thỏa mãn
Tóm lại với $a=5$ có $6+6+6+6=24$ số thỏa mãn
Tương tự với $a=2,3,4,5$ cũng vậy
Suy ra có thể viết được: $5\times 24=120$ số.
b) Vẫn gọi số cần tìm là $\overline{abcd}$. Số chẵn sẽ có tận cùng là $2$ hoặc $4$
Nếu $d=2$ thì lập luận tương tự phần $b$ ta viết được $24$ số $\overline{abcd}$
Nếu $d=4$ ta cũng viết được $24$ số
Do đó, viết được: $24+24=48$ số chẵn.
2. Dãy số có 4 chữ số chia hết cho 3 là: 1002;1005;1008;.....;9999
Số các số có 4 chữ số chia hết cho 3 là: (9999 - 1002) : 3 + 1 = 3000 số
Giải (1)
Có thể lập được các số có 5, 4, 3, 2 chữ số.
Xét về 5 chữ số: a b c d e:
a có 4 lựa chọn (lc)
b có 4 lc
c có 3 lc
d có 2 lc
e có 1 lc
Vậy có tất cả các số khác nhau có 5 chữ số: 4 × 4 × 3 × 2 × 1 = 96 (số)
Xét về 4 chữ số: a b c d
a có 4 lc
b có 4 lc
c có 3 lc
d có 2 lc
Vậy... : 4 × 4 × 3 × 2 = 96 (số)
Tự làm ...
Xét về 3 chữ số có 48 (số) Xét về 2 chữ số có 16 (số)
Vậy ... 96 + 96 + 48 + 16 = 256 (số)
Đ/s:..
Giải (2)
Cách 1:
Số đầu tiên có 4 chữ số chia hết cho 3 là: 1002
Số cuối cùng có 4 chữ số chia hết cho 3 là: 9999
Vì khoảng cách giữa 2 số là 3 đơn vị và ta có công thức:
(Số cuối - số đầu) ÷ khoảng cách + 1
=> (9999 - 1002) ÷ 3 + 1 = 3000 (số)
Đ/s:
a) Biểu thức đại số biểu thị số tiền lãi khi hết kì hạn 1 năm nếu gửi ngân hàng A đồng là:
\(\dfrac{{A.r}}{{100}}\) (đồng).
b) Cô Ngân gửi ngân hàng 200 triệu đồng với lãi suất 6%/năm. Hết kì hạn 1 năm, cô Ngân nhận được số tiền lãi là:
\(\dfrac{{200.6}}{{100}} = 12\) (triệu đồng).
#include <bits/stdc++.h>
using namespace std;
int n,kt;
int main()
{
cin>>n;
kt=0;
if (n%400==0) kt=1;
if ((n%4==0) and (n%100!=0)) kt=1;
if (kt==0) cout<<365;
else cout<<366;
return 0;
}
Vì mỗi số đều chia hết cho 5. Suy ra: Tất cả các số này đều có chữ số tận cùng là: 5
Vì là số có 5 chữ số khác nhau nên ta có:
1 cách chọn chữ số hàng đơn vị (chữ số 5)
5 cách chọn chữ số hàng chục nghìn (loại chữ số 5)
4 cách chọn chữ số hàng nghìn (loại chữ số 5 và chữ số hàng chục nghìn)
3 cách chọn chữ số hàng trăm (loại chữ số 5, chữ số hàng chục nghìn và chữ số hàng nghìn)
2 cách chọn chữ số hàng chục (loại chữ số 5, chữ số hàng chục nghìn, chữ số hàng nghìn và chữ số hàng trăm)
Theo quy tắc nhân, ta có: Số số có 5 chữ số khác nhau mà mỗi số đều chia hết cho 5, lập được từ các chữ số trên là: 1 x 5 x 4 x 3 x 2 = 120 (số)
Suy ra:
Mỗi chữ số 1, 2, 3, 7, 9 xuất hiện số lần là: 120 : 5 = 24 (lần)
Riêng chữ số 5 xuất hiện 120 lần
Suy ra: Tổng là:
(1 + 2 + 3 + 7 + 9) x 24 x 10000 + (1 + 2 + 3 + 7 + 9) x 24 x 1000 + (1 + 2 + 3 + 7 + 9) x 24 x 100 + (1 + 2 + 3 + 7 + 9) x 24 x 10 + 5 x 120
= 22 x 24 x (10000 + 1000 + 100 + 10) + 5 x 120
= 22 x 24 x 11110 + 5 x 120
= 5866080 + 600
= 5866680
đề sai
vi nếu ta chi (4;1) và (2;3) thành 2 nhóm thì phản ví dụ