Định a và b để đa thức A = x - 6x + ax +bx+ 1 là bình phương của một đa thức khác .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo tại đây:
Câu hỏi của Nguyễn Phan Thục Trinh - Toán lớp 8 - Học toán với OnlineMath
A là đa thức bậc 4 nên A là bình phương của 1 đa thức bậc 2
Gọi đa thức bậc 2 đó là:\(cx^2+dx+e\)
\(A=\left(cx^2+dx+e\right)^2\)\(=c^2x^4+d^2x^2+e^2+2cdx^3+2cex^2+2dex\)
Đồng nhất hệ số:\(c^2=1;2cd=-6;d^2+ce=a;2de=b;e^2=1\)
Nếu \(c=1\) thì \(d=-3;e=\pm1\)
+,Với \(e=1\) thì \(a=10;b=-6\)
+,Với \(e=-1\) thì \(a=8;b=6\)
Nếu \(c=-1\) tương tự
\(A=x^4-6x^3+ax^2+bx+1\)
Để A là bình phương của 1 đa thức thì \(A=\left(x^2+cx+1\right)^2\)
\(\Rightarrow A=x^4+c^2x^2+1+2cx^3+2x^2+2cx\)
\(=x^4+2cx^3+\left(2+c^2\right)x^2+2cx+1\)
Đồng nhất hệ số ta có: \(\hept{\begin{cases}2c=-6\\2+c^2=a\\2c=b\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-3\\2+\left(-3\right)^2=a\\2.\left(-3\right)=b\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-3\\a=2+9\\b=-6\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-3\\a=11\\b=-6\end{cases}}\)
Vậy \(a=11\)và \(b=-6\)