K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

A là đa thức bậc 4 nên A là bình phương của 1 đa thức bậc 2
Gọi đa thức bậc 2 đó là:\(cx^2+dx+e\)

\(A=\left(cx^2+dx+e\right)^2\)\(=c^2x^4+d^2x^2+e^2+2cdx^3+2cex^2+2dex\)
Đồng nhất hệ số:\(c^2=1;2cd=-6;d^2+ce=a;2de=b;e^2=1\)

Nếu \(c=1\) thì \(d=-3;e=\pm1\) 

   +,Với \(e=1\) thì \(a=10;b=-6\)

   +,Với \(e=-1\) thì \(a=8;b=6\)

Nếu \(c=-1\) tương tự

18 tháng 2 2017

a=6

b=4 

mk chắc chắn 100%

7 tháng 11 2018

giả sử : \(x^4-6x^3+ax^2+bx+1=\left(x^2+cx+d\right)^2\)

\(\Leftrightarrow x^4-6x^3+ax^2+bx+1=x^4+2cx^3+\left(c^2+2d\right)x^2+2cdx+d^2\)

\(\Rightarrow\left\{{}\begin{matrix}2c=-6\\a=c^2+2d\\b=2cd\\1=d^2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}d=1\\c=-3\\b=-6\\a=11\end{matrix}\right.\\\left\{{}\begin{matrix}d=-1\\c=-3\\b=6\\a=7\end{matrix}\right.\end{matrix}\right.\)

vậy : \(\left[{}\begin{matrix}\left\{{}\begin{matrix}a=11\\b=-6\end{matrix}\right.\\\left\{{}\begin{matrix}a=7\\b=6\end{matrix}\right.\end{matrix}\right.\)

Akai HarumaNguyễn Huy TúAce LegonaNguyễn Thanh Hằngsoyeon_Tiểubàng giảiMysterious PersonMashiro Shiina

6 tháng 3 2019

Gọi r là số dư 

Ta có: A(x)=B(x).(x+1)+r

          A(x)=C(x).(x-1)+r

=> A(1)=a+b+c=C(x).0+r=> a+b+c=r     (1)

    A(-1)=a-b+c =B(x).0+r=> a-b+c=r       (2)

lẤY (1)-(2) ta có: 2b=0=> b=0

5 tháng 3 2020

Bạn tham khảo tại đây:

Câu hỏi của Nguyễn Phan Thục Trinh - Toán lớp 8 - Học toán với OnlineMath

5 tháng 9 2020

Nhận xét: P(x) có dạng một khai triển của đa thức \(\left(\alpha x+\beta\right)^3\).Trong P(x): hệ số của x3 là a,hệ số tự do là 1

=> nếu P(x) là bậc 3 của 1 đa thức thì đa thức đó phải có dạng \(\left(\sqrt[3]{a}x+1\right)^3=ax^3+3\sqrt[3]{a^2}x^2+3\sqrt[3]{a}x+1\)

Đồng nhất các hệ số => \(\hept{\begin{cases}3\sqrt[3]{a^2}=12\\b=3\sqrt[3]{a}\end{cases}}\)Giải được 2 nghiệm (a;b)=(8;6),(-8;-6)