Tìm số tự nhiên n để\(\frac{2n-1}{9n+4}\)là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(d=\left(1-3n,2n-3\right)\).
Suy ra \(\hept{\begin{cases}1-3n⋮d\\2n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2-6n⋮d\\6n-9⋮d\end{cases}}\Rightarrow\left(2-6n\right)+\left(6n-9\right)=-7⋮d\)
\(\Rightarrow\orbr{\begin{cases}d=1\\d=7\end{cases}}\).
Để \(\frac{1-3n}{2n-3}\)là phân số tối giản thì \(d=1\).
\(d\ne7\Rightarrow1-3n\ne7k\Leftrightarrow n\ne\frac{1-7k}{3},\left(k\inℤ\right)\).
Gọi d là ƯCLN(9n+5;2n+1)
Ta có 9n+5\(⋮\)d;2n+1\(⋮\)d
=>2*(9n+5)\(⋮\)d;9*(2n+1)\(⋮\)d
=>18n+10\(⋮\)d;18n+9\(⋮\)d
=>[(18n+10)-(18n+9)]\(⋮\)d
=>[18n+10-18n-9]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(9n+5;2n+1)=1 Nên phân số \(\frac{9n+5}{2n+1}\) luôn là phân số tối giản(nEN*)
Đề phải là nEN* hoặc n>1
a, Để\(\frac{2n+3}{4n+1}\)có giá trị là số tự nhiên thì 2n+3 \(⋮\) 4n+1
Ta có 2n+3 \(⋮\)4n+1
=> 4n+6 \(⋮\)4n+1
=> (4n+1)+5 \(⋮\)4n+1
=> 5 \(⋮\)4n+1 => 4n+1 \(\in\)Ư(5) => 4n+1 \(\in\){ -1;-5;1;5 }
Ta có bảng :
4n+1 | -1 | -5 | 1 | 5 |
4n | -2 | -6 | 0 | 4 |
n | không có | không có | 0 | 1 |
Mà n \(\in\)N
+ Nếu n = 0 ta có \(\frac{2.0+3}{4.0+1}\)=\(3\)(chọn)
+ Nếu n = 1 ta có \(\frac{2.1+3}{4.1+1}=5\) (chọn )
Vậy n=0 hoặc n=1 thì phân số \(\frac{2n+3}{4n+1}\)có giá trị là số tự nhiên
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
b, Gọi d \(\in\)UC(2n+3;4n+1)
Ta có 2n+3 \(⋮\)d => 2.(2n+3)\(⋮\)d
4n+1 \(⋮\)d
Suy ra 2(2n+3) - (4n+1) \(⋮\)d
4n+6 - 4n+1 \(⋮\)d
5 \(⋮\)d => d \(\in\)Ư(5) => d\(\in\){ -1 ; -5; 1 ; 5 }
+ Nếu 2n+3 \(⋮\)5 => 6n +9 \(⋮\)5
(5n+5).(n+4) \(⋮\)5
n+4 \(⋮\)5 => n = 5k - 4 (k \(\in\)N*)
Thì 4n+1 = 4(5k - 4) +1= 20k - 16 +1 = 20k -15 \(⋮\)5
Vậy n \(\ne\) 5k - 4 (k \(\in\)N*) thì phân số \(\frac{2n+3}{4n+1}\)tối giản
1, A=\(\frac{2n+3}{\text{4n + 1}}\)
A=\(\frac{4n+6}{\text{4n + 1}}\)
A=\(\frac{4n+1+5}{\text{4n + 1}}\)
A=1+\(\frac{5}{\text{4n + 1}}\)
Để A là số tự nhiên\(\Leftrightarrow\)1+\(\frac{5}{\text{4n + 1}}\) là số tự nhiên \(\Leftrightarrow\)\(\frac{5}{\text{4n + 1}}\) là số tự nhiên \(\Leftrightarrow\) 5\(⋮\)(4n+1)\(\Leftrightarrow\)(4n+1)\(\in\)Ư(5)={-5;-1;1;5}\(\Leftrightarrow\)4n\(\in\){-6;-2;0;4}\(\Leftrightarrow\)n\(\in\){\(\frac{-3}{2}\);\(\frac{-1}{2}\);0;1}. Mà n là số tự nhiên nên n\(\in\){0;1}.
Vậy n\(\in\){0;1} thì A là số tự nhiên
Câu 3 :
b. P là nguyên tố khi và chỉ khi n + 4 chia hết cho 2n - 1
=> 2n + 8 chia hết cho 2n - 1
mà 2n - 1 chia hết cho 2n - 1 . Suy ra 9 chia hết cho 2n - 1
=> 2n - 1 \(\inƯ\)(9) = { 1 , 3 , 9 }
=> 2n - 1 \(\in\) { 1 ,3 , 9 }
=> 2n\(\in\){ 2 , 4 ,10}
=> n\(\in\){ 1, 2 ,5 }
=> P\(\in\){ 5 , 2 , 1 }
Vì P là nguyên tố nên P\(\in\){ 5,2}
vậy n\(\in\){ 1 , 2 }
Câu 4 :
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Đặt d là ước nguyên tố của 2n - 1 và 9n + 4
=> 2n - 1 chia hết cho d ; 9n + 4 chia hết cho d
2n - 1 chia hết cho d => 9( 2n - 1 ) chia hết cho d => 18n - 9 chia hết cho d
9n + 4 chia hết cho d => 2( 9n + 4 ) chia hết cho d => 18n + 8 chia hết cho d
=>( 18n + 8 ) - ( 18n - 9 ) chia hết cho d
=>18n + 8 - 18n + 9 chia hết cho d
=> 17 chia hết cho d => d thuộc ước của 17 mà ước của 17 là 1;17