K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

Nhớ trả lời nhanh nha

21 tháng 3 2021

1/n=3

26 tháng 4 2020

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

3 tháng 4 2023

loading...  Nhớ tick cho mình nha

 

 

 

11 tháng 7 2019

Vì 12n+1 = 12n +24 - 23 = 12 (n+2) - 23

=> 12n+1 / 2 (n+2) = 12 (n+2) - 23 / 2n (n+2) = 12 (n+2) / 2n (n+2) - 23 / 2n (n+2) = 6 / n - 23 / 2n (n+2)

Ta có: 2n (n+2) chia hết cho 2

=> 2n (n+2) là số chẵn

Mà 23 là số lẻ nên phân số 23 / 2n (n+2) là phân số tối giản

=> 6 / n - 23 / 2n (n+2) là phân số tối giản

Vậy 12n+1 / 2 (n+2) là phân số tối giản

11 tháng 7 2019

Mọi người ai trả lời giúp mình với ! @_@

11 tháng 7 2019

Sau một hồi tìm hiểu thì mình đã có lời giải r, bạn nào chưa bt thì tham khảo nhé !

Vì 12n+1 = 12n +24 - 23 = 12 (n+2) - 23

=> 12n+1 / 2 (n+2) = 12 (n+2) - 23 / 2n (n+2) = 12 (n+2) / 2n (n+2) - 23 / 2n (n+2) = 6 / n - 23 / 2n (n+2)

Ta có: 2n (n+2) chia hết cho 2

=> 2n (n+2) là số chẵn

Mà 23 là số lẻ nên phân số 23 / 2n (n+2) là phân số tối giản

=> 6 / n - 23 / 2n (n+2) là phân số tối giản

Vậy 12n+1 / 2 (n+2) là phân số tối giản

23 tháng 2 2016

1. Để A tối giản thì:

(n + 1, n + 3) = 1

Gọi d là ƯC nguyên tố của n + 1 và n + 3

=> n + 3 - n - 1 chia hết cho d

=> 2 chia hết cho d

Mà d nguyên tố

=> d = 2

Tìm n để n + 1 chia hết cho d; n + 3 chia hết cho 2

Vì n + 3 = n + 1 + 2 nên n + 3 chia hết cho 2 thì n + 1 chia hết cho 2

=> n + 3 = 2k (k thuộc Z)

=> n = 2k - 3

Vậy n khác 2k - 3 thì A tối giản.

2. 12n + 1 / 30n + 2 tối giản

=> (12n + 1, 30n + 2) = 1

Gọi ƯCLN (12n + 1, 30n + 2) = d

=> 12n + 1 chia hết cho d => 5.(12n + 1) = 60n + 5 chia hết cho d

=> 30n + 2 chia hết cho d => 2.(30n + 2) = 60n + 4 chia hết cho d

=> 60n + 5 - 60n - 4 chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy p/số trên tối giản.