K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 3 2019

\(a^{2013}+b^{2013}=a^{2012}+b^{2012}\Rightarrow a^{2012}\left(a-1\right)+b^{2012}\left(b-1\right)=0\) (1)

\(a^{2014}+b^{2014}=a^{2013}+b^{2013}\Rightarrow a^{2013}\left(a-1\right)+b^{2013}\left(b-1\right)=0\) (2)

Trừ vế cho vế của (2) cho (1):

\(\left(a-1\right)\left(a^{2013}-a^{2012}\right)+\left(b-1\right)\left(b^{2013}-b^{2012}\right)=0\)

\(\Leftrightarrow a^{2012}\left(a-1\right)^2+b^{2012}\left(b-1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}a^{2012}\left(a-1\right)^2=0\\b^{2012}\left(b-1\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a-1=0\\b-1=0\end{matrix}\right.\) \(\Rightarrow a=b=1\) (do \(a;b>0\))

\(\Rightarrow P=1+1=2\)

16 tháng 3 2019

Nguyễn Việt Lâm

8 tháng 1 2018

ta có \(a^{2012}+b^{2012}=a^{2013}+b^{2013}\)

\(\Rightarrow a^{2012}-a^{2013}+b^{2012}_{ }-b^{2013}=0\)

\(\Rightarrow a^{2012}\left(1-a\right)+b^{2012}\left(1-b\right)=0\)\(\left(1\right)\)

tương tự \(a^{2013}+b^{2013}=a^{2014}+b^{2014}\)

\(\Leftrightarrow a^{2013}\left(1-a\right)+b^{2013}\left(1-b\right)=0\)\(\left(2\right)\)

trừ (1) cho (2)

ta có \(\left(a^{2012}-a^{2013}\right)\left(1-a\right)\)\(+\left(b^{2012}-b^{2013}\right)\left(1-b\right)=0\)

\(\Leftrightarrow a^{2012}\left(1-a\right)^2+b^{2012}\left(1-b\right)^2=0\)

\(a^{2012}\left(1-a\right)^2\ge0;b^{2012}\left(1-b\right)^2\ge0\)

\(\Rightarrow a=1;b=1\)

\(\Rightarrow M=20\times1+11\times1+2013=2044\)

8 tháng 1 2018

lay cai dau tru cai thu 2

xong lay cai thu 2 tru cai thu 3

xong lay ket qua dau tim dc tru ket qua sau la tim dc a=b=1

roi thay vao tinh M la xong

AH
Akai Haruma
Giáo viên
14 tháng 7

Lời giải:

Đặt $\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=k$

$\Rightarrow a=2012k; b=2013k; c=2014k$. Khi đó:

$A=4(a-b)(b-c)(c-a)=4(2012k-2013k)(2013k-2014k)(2014k-2012k)$

$=4(-k)(-k)(2k)=8k^3$

14 tháng 7 2015

Đề \(\Rightarrow a^{2014}+b^{2014}-2\left(a^{2013}+b^{2013}\right)+a^{2012}+b^{2012}=0\)

\(\Leftrightarrow a^{2012}\left(a^2-2a+1\right)+b^{2012}\left(b^2-2b+1\right)=0\)

\(\Leftrightarrow a^{2012}\left(a-1\right)^2+b^{2012}\left(b-1\right)^2=0\)

\(\Leftrightarrow\left(a=0\text{ hoặc }a=1\right)\text{ và }\left(b=0\text{ hoặc }b=1\right)\)

\(+a=0\text{ hoặc }a=1\text{ thì }a^{2014}=a^{2010}\)

\(+b=0\text{ hoặc }b=1\text{ thì }b^{2014}=b^{2010}\)

Suy ra \(a^{2014}+b^{2014}=a^{2010}+b^{2010}\)

18 tháng 5 2016

Ta có:

B=2012/(2013+2014)+2013/(2013+2014)

Xét từng số hạng của B:

2012/(2013+2014)<2012/2013

2013/2013+2014<2013/2014

=>B=2012/(2013+2014)+2013/(2013+2014)<2012/2013+2013/2014=A

=>B<A

18 tháng 5 2016

Mình biết làm rồi khỏi cần nữa

 

11 tháng 8 2016

Từ giả thiết suy ra : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c^2+ac+bc}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[\frac{c^2+ac+bc+ab}{ab\left(c^2+ac+bc\right)}\right]=0\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{ab\left(c^2+bc+ac\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a+b=0\) hoặc \(b+c=0\) hoặc \(a+c=0\)

Nếu a + b = 0 thì c = 2014 thay vào M : 

\(M=\frac{1}{a^{2013}}+\frac{1}{b^{2013}}+\frac{1}{c^{2013}}=\frac{a^{2013}+b^{2013}}{\left(ab\right)^{2013}}+\frac{1}{c^{2013}}=\frac{\left(a+b\right).A}{\left(ab\right)^{2013}}+\frac{1}{c^{2013}}\)

\(=\frac{1}{c^{2013}}=\frac{1}{2014^{2013}}\) (A là một nhân tử trong phân tích a2013 + b2013 thành nhân tử)

Tương tự với các trường hợp còn lại.

Vậy \(M=\frac{1}{2014^{2013}}\) 

28 tháng 2 2018
bạn ơi giúp mình trả lời câu này với....mình đang cần gấp..cám ơn nhé