K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có:

BA=BD ⇒△BAD cân tại B có \(\widehat{B}=60^0\)

⇒△BAD đều (đpcm)

b)△BAD đều (câu a)

⇒AB=AD

Xét △AHB và △AHD có:

AH chung

AB=AD (cmt)

HB=HD (gt)

⇒ △AHB=△AHD (ccc)⇒\(\widehat{AHB}=\widehat{AHD}=90^0\Rightarrow AH\text{⊥}BD\)(đpcm)

c)Áp dụng định lý Pytago vào △AHB vuông tại H, ta có:

\(AB^2=AH^2+HB^2\Rightarrow2^2=AH^2+1^2\Rightarrow4=AH^2+1\Rightarrow AH^2=3\Rightarrow AH=\sqrt{3}\left(AH>0\right)\)

Áp dụng định lý Pytago vào △AHC vuông tại H, ta có:

\(AC^2=AH^2+HC^2\Rightarrow AC^2=\left(\sqrt{3}\right)^2+4^2\Rightarrow AC^2=3+16=19\Rightarrow AC=\sqrt{19}\left(AH>0\right)\)

d)Ta có:

\(AB^2+AC^2=2^2+\left(\sqrt{19}\right)^2=4+19=23\) \(\ne BC^2=5^2=25\)

nên △ABC không phải là tam giác vuông

\(\widehat{BAC}< 90^{0^{ }}\)(23 cm<25cm)

A B C D H

11 tháng 3 2019

A B C D H

Cm: a) Ta có: BA = BD => t/giác ABD là t/giác cân tại B

=> góc BAD = góc ADB = (1800 - góc B)/2 = (1800 - 600)/2 = 1200/2 = 600

Do góc B = góc BAD = góc ADB = 600

=> T/giác ABD là t/giác đều

b) Xét t/giác ABH và t/giác ADH

có AB = AC (vì t/giác ABD là t/giác đều)

  BH = DH (gt)

  AH : chung

=> t/giác ABH = t/giác ADH (c.c.c)

=> góc AHB = góc AHD (hai góc tương ứng)

Mà góc AHB + góc AHD = 1800 (kề bù)

hay 2. góc AHB = 1800

=> góc  AHB = 1800 : 2 = 900

=> AH \(\perp\)BD

c) Ta có: T/giác ABD là t/giác đều => AB = AD = BD

Mà BH = HD = BD/2 = 2/2 = 1

Xét t/giác ABH vuông tại H(áp dụng định lí Pi-ta-go)

Ta có: AB2 = AH2 + BH2 

=> AH2 = AB2 - BH2 = 22 - 12 = 4 - 1 = 3

Ta lại có: BH + HC = BC
=> HC = BC - BH = 5 - 1 = 4 

Xét t/giác AHC vuông tại H (áp dụng định lí Pi - ta - go)

Ta có: AC2 = AH2 + HC2 = 3 + 42 = 3 + 16 = 19

=> AC = \(\sqrt{19}\)

d) Xét t/giác ABC

Ta có: AB2 + AC2 = 22 + \(\sqrt{19}^2\)= 4 + 19 = 23

         BC2 = 52 = 25

=> AB + AC2 \(\ne\) BC2

=> t/giác ABC ko phải là t/giác vuông

=> góc BAC < 900 (vì 23 < 25)

16 tháng 4 2020

sao con người phải chết

26 tháng 10 2018

24 tháng 2 2021

a, ΔABD có BA = BD (gt) và ˆABDABD^ = ˆABCABC^ = 60o60o

⇒ ΔABD đều (đpcm)

b, ΔABD đều ⇒ AB = AD

Xét ΔAHB và ΔAHD có:

AH chung; AB = AD (cmt); HB = HD (H là trung điểm của BD)

⇒ ΔAHB = ΔAHD (c.c.c)

⇒ ˆAHBAHB^ = ˆAHDAHD^ mà 2 góc này kề bù

⇒ ˆAHBAHB^ = ˆAHDAHD^ = 90o90o

⇒ AH ⊥ BD (đpcm)

c, ΔABD đều ⇒ AB  = BD = AD = 2cm

⇒ HB = HD = 1cm

⇒ HC = BC - HB = 5 - 1 = 4cm

ΔAHB vuông tại H ⇒ AH = √AB2−HB2AB2−HB2 = √22−1222−12 = √33cm

ΔAHC vuông tại H ⇒ AC = √AH2+HC2AH2+HC2 = √3+423+42 = √1919cm

a) Xét ΔBAD có BA=BD(gt)

nên ΔBAD cân tại B(Định nghĩa tam giác cân)

Xét ΔBAD cân tại B có \(\widehat{ABD}=60^0\)(gt)

nên ΔBAD đều(Dấu hiệu nhận biết tam giác đều)

b) Ta có: ΔBAD đều(cmt)

mà AH là đường trung tuyến ứng với cạnh BD(gt)

nên AH là đường cao ứng với cạnh BD(Định lí tam giác cân)

hay AH\(\perp\)BD(Đpcm)

 

30 tháng 12 2018

a, ta có
BC^2=5^2=25
AB^2+AC^2=3^2+4^2=9+16=25
=>AB^2+AC^2=BC^2
=> tam giác ABC vuông tại A
b. 
Dx vuông góc với BC
=> góc BDH=90 độ
xét tam giác HBA và tam giác HBD có
BA=BD(gt)
HB cạnh chung
góc HAB=góc HDB= 90 độ
=> tam giác HBA= tam giác HBD(cạnh huyền- cạnh góc vuông)
=> góc HBA=góc HBD(hai góc tương ứng)
=> BH là phân giác góc ABD

a: góc C=180-80-60=40 độ

góc A>góc B>góc C

=>BC>AC>AB

b: Xét ΔBAD và ΔBMD có

BA=BM

góc ABD=góc MBD

BD chung

=>ΔBAD=ΔBMD

c: Xét ΔDAH và ΔDMC có

góc DAH=góc DMC

DA=DM

góc ADH=góc MDC

=>ΔDAH=ΔDMC

=>DH=DC

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A
b: góc MAD+góc BAD=90 độ

góc DAH+góc BDA=90độ

góc BAD=góc BDA

=>góc MAD=góc HAD

Xét ΔAHD và ΔAMD có

AH=AM

góc HAD=góc MAD

AD chung

=>ΔAHD=ΔAMD

=>góc AMD=90 độ

Xét ΔAMN vuông tại M và ΔAHC vuông tại H có

AM=AH

góc MAN chung

=>ΔAMN=ΔAHC

=>AN=AC

=>ΔANC cân tại A