K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có:

BA=BD ⇒△BAD cân tại B có \(\widehat{B}=60^0\)

⇒△BAD đều (đpcm)

b)△BAD đều (câu a)

⇒AB=AD

Xét △AHB và △AHD có:

AH chung

AB=AD (cmt)

HB=HD (gt)

⇒ △AHB=△AHD (ccc)⇒\(\widehat{AHB}=\widehat{AHD}=90^0\Rightarrow AH\text{⊥}BD\)(đpcm)

c)Áp dụng định lý Pytago vào △AHB vuông tại H, ta có:

\(AB^2=AH^2+HB^2\Rightarrow2^2=AH^2+1^2\Rightarrow4=AH^2+1\Rightarrow AH^2=3\Rightarrow AH=\sqrt{3}\left(AH>0\right)\)

Áp dụng định lý Pytago vào △AHC vuông tại H, ta có:

\(AC^2=AH^2+HC^2\Rightarrow AC^2=\left(\sqrt{3}\right)^2+4^2\Rightarrow AC^2=3+16=19\Rightarrow AC=\sqrt{19}\left(AH>0\right)\)

d)Ta có:

\(AB^2+AC^2=2^2+\left(\sqrt{19}\right)^2=4+19=23\) \(\ne BC^2=5^2=25\)

nên △ABC không phải là tam giác vuông

\(\widehat{BAC}< 90^{0^{ }}\)(23 cm<25cm)

A B C D H

11 tháng 3 2019

A B C D H

Cm: a) Ta có: BA = BD => t/giác ABD là t/giác cân tại B

=> góc BAD = góc ADB = (1800 - góc B)/2 = (1800 - 600)/2 = 1200/2 = 600

Do góc B = góc BAD = góc ADB = 600

=> T/giác ABD là t/giác đều

b) Xét t/giác ABH và t/giác ADH

có AB = AC (vì t/giác ABD là t/giác đều)

  BH = DH (gt)

  AH : chung

=> t/giác ABH = t/giác ADH (c.c.c)

=> góc AHB = góc AHD (hai góc tương ứng)

Mà góc AHB + góc AHD = 1800 (kề bù)

hay 2. góc AHB = 1800

=> góc  AHB = 1800 : 2 = 900

=> AH \(\perp\)BD

c) Ta có: T/giác ABD là t/giác đều => AB = AD = BD

Mà BH = HD = BD/2 = 2/2 = 1

Xét t/giác ABH vuông tại H(áp dụng định lí Pi-ta-go)

Ta có: AB2 = AH2 + BH2 

=> AH2 = AB2 - BH2 = 22 - 12 = 4 - 1 = 3

Ta lại có: BH + HC = BC
=> HC = BC - BH = 5 - 1 = 4 

Xét t/giác AHC vuông tại H (áp dụng định lí Pi - ta - go)

Ta có: AC2 = AH2 + HC2 = 3 + 42 = 3 + 16 = 19

=> AC = \(\sqrt{19}\)

d) Xét t/giác ABC

Ta có: AB2 + AC2 = 22 + \(\sqrt{19}^2\)= 4 + 19 = 23

         BC2 = 52 = 25

=> AB + AC2 \(\ne\) BC2

=> t/giác ABC ko phải là t/giác vuông

=> góc BAC < 900 (vì 23 < 25)

16 tháng 4 2020

sao con người phải chết

26 tháng 10 2018

24 tháng 2 2021

a, ΔABD có BA = BD (gt) và ˆABDABD^ = ˆABCABC^ = 60o60o

⇒ ΔABD đều (đpcm)

b, ΔABD đều ⇒ AB = AD

Xét ΔAHB và ΔAHD có:

AH chung; AB = AD (cmt); HB = HD (H là trung điểm của BD)

⇒ ΔAHB = ΔAHD (c.c.c)

⇒ ˆAHBAHB^ = ˆAHDAHD^ mà 2 góc này kề bù

⇒ ˆAHBAHB^ = ˆAHDAHD^ = 90o90o

⇒ AH ⊥ BD (đpcm)

c, ΔABD đều ⇒ AB  = BD = AD = 2cm

⇒ HB = HD = 1cm

⇒ HC = BC - HB = 5 - 1 = 4cm

ΔAHB vuông tại H ⇒ AH = √AB2−HB2AB2−HB2 = √22−1222−12 = √33cm

ΔAHC vuông tại H ⇒ AC = √AH2+HC2AH2+HC2 = √3+423+42 = √1919cm

a) Xét ΔBAD có BA=BD(gt)

nên ΔBAD cân tại B(Định nghĩa tam giác cân)

Xét ΔBAD cân tại B có \(\widehat{ABD}=60^0\)(gt)

nên ΔBAD đều(Dấu hiệu nhận biết tam giác đều)

b) Ta có: ΔBAD đều(cmt)

mà AH là đường trung tuyến ứng với cạnh BD(gt)

nên AH là đường cao ứng với cạnh BD(Định lí tam giác cân)

hay AH\(\perp\)BD(Đpcm)

 

23 tháng 11 2016

Ta có hình vẽ sau:

A H D B C 1 2 M N

a) \(\widehat{AHB}\) = \(\widehat{DHB}\) = \(\frac{180^o}{2}\) = 90o (2 góc kề bù)

Xét ΔABH và ΔDBH có:

BH là cạnh chung

\(\widehat{AHB}\) = \(\widehat{DHB}\) = 90o (cm trên)

AH = DH (gt)

=> ΔABH = ΔDBH (c.g.c) (đpcm)

b) Vì ΔABH = ΔDBH (ý a)

=> \(\widehat{B_1}\) = \(\widehat{B_2}\) ( 2 góc tương ứng)

= BC là tia phân giác của \(\widehat{ABD}\) (đpcm)

c) Vì ΔABH = ΔDBH => AB = DB (2 cạnh tương ứng)

Xét ΔABC và ΔDBC có:

BC là cạnh chung

\(\widehat{B_1}\) = \(\widehat{B_2}\) (ý b)

AB = DB (cm tên)

=> ΔABC = ΔDBC(c.g.c)

=> \(\widehat{BAC}\) = \(\widehat{BDC}\) (2 góc tương ứng) (đpcm)

d) Vì ΔABH = ΔDBH (ý a)

=> AB = DB => \(\frac{1}{2}\)AB = \(\frac{1}{2}\)DB

=> NB = ND = \(\frac{1}{2}\)DB

=> N là trung điểm của BD(đpcm)

23 tháng 11 2016

câu a) có nhầm ko z bn?

a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có

HB chung

HA=HD

Do đó: ΔABH=ΔDBH

b: Ta có: ΔABH=ΔDBH

nên \(\widehat{ABH}=\widehat{DBH}\)

hay BC là tia phân giác của góc ABD

24 tháng 11 2016

Ta có hình vẽ:

A B C D H M N

a/ Xét tam giác ABH và tam giác DBH có:

BH: cạnh chung

\(\widehat{AHB}\)=\(\widehat{DHB}\)=900 (GT)

AH = HD (GT)

Vậy tam giác ABH = tam giác DBH (c.g.c)

b/ Ta có: tam giác ABH = tam giác DBH (câu a)

=> \(\widehat{ABH}\)=\(\widehat{DBH}\)( 2 góc tương ứng)

=> \(\widehat{ABC}\)=\(\widehat{DBC}\)

=> BC là phân giác của góc ABD (đpcm)

c/ Xét tam giác ABC và tam giác DBC có:

BC: cạnh chung

\(\widehat{ABC}\)=\(\widehat{DBC}\) (đã chứng minh)

AB = DB (vì tam giác ABH = tam giác DBH)

=> tam giác ABC = tam giác DBC (c.g.c)

=>\(\widehat{BAC}\)=\(\widehat{BDC}\)(2 góc tương ứng)

d/ Ta có: AB = DB (vì tam giác ABH = tam giác DBH)

Mà BM = AM

=> BN = DN

\(\Rightarrow\) Vậy N là trung điểm BD (đpcm)

a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có

HB chung

HA=HD

Do đó: ΔABH=ΔDBH

b: Ta có: ΔABH=ΔDBH

nên \(\widehat{ABH}=\widehat{DBH}\)

hay BC là tia phân giác của góc ABD

c: Xét ΔACD có 

CH là đường cao

CH là đường trung tuyến

Do đó: ΔACD cân tại C

Xét ΔBAC và ΔBDC có

BA=BD

AC=DC

BC chung

DO đó: ΔBAC=ΔBDC

Suy ra: \(\widehat{BAC}=\widehat{BDC}\)