Tìm GTNN của A = 3x^2+(x-2)^2+1 giúp suli với các bn nhá.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x+\dfrac{1}{x-2}\\ \Rightarrow A=x-2+\dfrac{1}{x-2}+2\)
Áp dụng BĐT Cô-si ta có:
\(A=x-2+\dfrac{1}{x-2}+2\\ \ge2\sqrt{\left(x-2\right).\dfrac{1}{x-2}}+2\\ =2\sqrt{1}+2\\ =4\)
\(\text{Dấu "=" xảy ra}\Leftrightarrow x-2=\dfrac{1}{x-2}\\ \Leftrightarrow\left(x-2\right)^2=1\\ \Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\)
Vậy \(A_{min}=4\Leftrightarrow x=3\)
\(A=x-2+\dfrac{1}{x-2}+2\ge2+2=4\)
Dấu '=' xảy ra khi x-2=1 hoặc x-2=-1
=>x=3 hoặc x=1
\(A=1.\left(x+y\right)\left(x^2+y^2\right)...\left(x^{64}+y^{64}\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)...\left(x^{64}+y^{64}\right)\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)...\left(x^{64}+y^{64}\right)\)
\(=\left(x^4-y^4\right)...\left(x^{64}+y^{64}\right)\)
\(=...=\left(x^{64}-y^{64}\right)\left(x^{64}+y^{64}\right)=x^{128}-y^{128}\)
Ta có : \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=2^2=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=4-2\cdot\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=4-2\cdot\left(\dfrac{a+b+c}{abc}\right)=4-2\cdot\dfrac{abc}{abc}=4-2\cdot1=2\)
a) \(A=x^2+3x+4=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
\(minA=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{3}{2}\)
b) \(B=2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)
\(minB=\dfrac{7}{8}\Leftrightarrow x=\dfrac{1}{4}\)
c) \(C=5x^2+2x-3=5\left(x+\dfrac{1}{5}\right)^2-\dfrac{16}{5}\ge-\dfrac{16}{5}\)
\(minC=-\dfrac{16}{5}\Leftrightarrow x=-\dfrac{1}{5}\)
d) \(D=4x^2+4x-24=\left(2x+1\right)^2-25\ge-25\)
\(minD=-25\Leftrightarrow x=-\dfrac{1}{2}\)
e) \(E=x^2+6x-11=\left(x+3\right)^2-20\ge-20\)
\(minE=-20\Leftrightarrow x=-3\)
f) \(G=\dfrac{1}{4}x^2+x-\dfrac{1}{3}=\left(\dfrac{1}{2}x+1\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minG=-\dfrac{4}{3}\Leftrightarrow x=-2\)
\(A=x^2+3x+4=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\)
Do \(\left(x+\dfrac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow A=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
\(minA=\dfrac{7}{4}\Leftrightarrow x+\dfrac{3}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)
Mấy câu còn lại làm tương tự nhé em^^
a/
\(A=\sqrt{x+2}.\sqrt{x-3}\)
ĐKXĐ: \(\hept{\begin{cases}x+2\ge0\\x-3\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-2\\x\ge3\end{cases}\Rightarrow}x\ge3}\)
\(B=\sqrt{\left(x+2\right)\left(x-3\right)}\)
ĐKXĐ: \(\hept{\begin{cases}x+2\ge0\\x-3\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-2\\x\ge3\end{cases}\Rightarrow}x\ge3}\)
b/ A = B \(\Leftrightarrow\sqrt{x+2}.\sqrt{x-3}=\sqrt{\left(x+2\right)\left(x-3\right)}\)
\(\Rightarrow\sqrt{\left(x+2\right)\left(x-3\right)}=\sqrt{\left(x+2\right)\left(x-3\right)}\) (đúng)
Vậy với mọi giá trị của \(x\in R\) thì A = B
\(A=3x^2+\left(x-2\right)^2+1\)
\(A=3x^2+x^2-4x+4+1\)
\(A=4x^2-4x+1+4\)
\(A=\left(2x-1\right)^2+4\ge4\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)
\(A=3x^2+\left(x-2\right)^2+1=4x^2-4x+5=\left(2x-1\right)^2+4\)
Vì \(\left(2x-1\right)^2\ge0\Rightarrow A\ge4\)
Dấu ''='' xảy ra \(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(Min_A=4\Leftrightarrow x=\frac{1}{2}\)