K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2019

\( (2x-1)^2-(2x+1)(2x-1)=-2\)

\(\Leftrightarrow4x^2-4x+1-\left(4x^2-1\right)+2=0\)

\(\Leftrightarrow4x^2-4x+1-4x^2+1+2=0_{ }\)

\(\Leftrightarrow-4x+4=0\Leftrightarrow4x=4\Leftrightarrow x=1\)

Vậy phương trình có 1 nghiệm là x = 1

11 tháng 3 2019

Ngô Ngọc Anh bạn có thể giải thích rõ vì sao ra là 4x2-4x+1-(4x2-1)+2=0 không ạ?

11 tháng 7 2021

`a)|2x+1|=5`

`<=>` \(\left[ \begin{array}{l}2x+1=5\\2x+1=-5\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-6\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=2\\x=-3\end{array} \right.\) 

`b)|2x+1|=0`

`<=>2x+1=0`

`<=>2x=-1`

`<=>x=-1/2`

`c)|2x+1|=7`

`<=>` \(\left[ \begin{array}{l}2x+1=7\\2x+1=-7\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}2x=6\\2x=-8\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=4\\x=-4\end{array} \right.\) 

`d)|2x+5|=|3x-7|`

`<=>` \(\left[ \begin{array}{l}2x+5=3x-7\\2x+5=7-3x\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=12\\5x=2\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=12\\x=\dfrac25\end{array} \right.\) 

`e)|2x+7|=1`

`<=>` \(\left[ \begin{array}{l}2x+7=1\\2x+7=-1\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}2x=-6\\2x=-8\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=3\\x=-4\end{array} \right.\) 

`g)|x-2|+|2x-3|=2`

Nếu `x>=2=>|x-2|=x-2,|2x-3|=2x-3`

`pt<=>x-2+2x-3=2`

`<=>3x-5=2`

`<=>3x=7`

`<=>x=7/3(tm)`

Nếu `x<=3/2=>|x-2|=2-x,|2x-3|=3-2x`

`pt<=>2-x+3-2x=2`

`<=>5-3x=2`

`<=>3x=3`

`<=>x=1(tm)`

Nếu `3/2<=x<=2=>|x-2|=2-x,|2x-3|=2x-3`

`pt<=>2-x+2x-3=2`

`<=>x-1=2`

`<=>x=3(l)`

`h)|x+2|+|1-x|=3x+2`

Vì `VT>=0=>3x+2>=0=>x>=-2/3`

`=>|x+2|=x+2`

`pt<=>x+2+|1-x|=3x+2`

`<=>|1-x|=2x(x>=0)`

`<=>` \(\left[ \begin{array}{l}2x=1-x\\2x=x-1\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}3x=1\\x=-1\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=\dfrac13(TM)\\x=-1(KTM)\end{array} \right.\) 

AH
Akai Haruma
Giáo viên
11 tháng 7 2021

a.

$|2x+1|=5$
\(\Leftrightarrow \left[\begin{matrix} 2x+1=5\\ 2x+1=-5\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)

b.

$|2x+1|=0$

$\Leftrightarrow 2x+1=0$

$\Leftrightarrow x=-\frac{1}{2}$
c.

$|2x+1|=7$

\(\Leftrightarrow \left[\begin{matrix} 2x+1=7\\ 2x+1=-7\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=3\\ x=-4\end{matrix}\right.\)

 

27 tháng 6 2021

1,2,3,4 không tính được.

`5)(2x-1/2)^2`

`=(2x)^2-2+(1/2)^2`

`=4x^2-2+1/4`

`6)(x+1/4)^2`

`=x^2+1/2x+1/16`

27 tháng 6 2021

tính theo kiểu hằng đẳng thức đáng nhớ ý bạn :'(

 

Đầy tiên ta đi rút gọn biểu thức.

Có : $A = (3x+5).(2x-1) + (4x-1).(3x+2)$

$ = 6x^2 + 7x - 5 + 12x^2 + 5x - 2$

$ = 18x^2 + 12x-7$

Vì $|x| = 2$ nên $x = 2$ hoặc $x=-2$

Với $x=2$ ta có : $A = 18.2^2 + 12.2-7 = 89$

Với $x=-2$ ta có : $A = 18.(-2)^2 + 12.(-2) - 7 = 41$

3 tháng 8 2021

Cảm ơn bạn nha <3

3 tháng 3 2021

P= (1 - x^2 )/ (x+1 )+(2x^2 +x)/x +x^2

P=\(\dfrac{1-x^2}{x+1}+\dfrac{x\left(2x+1\right)}{x\left(x+1\right)}\)

P=\(\dfrac{1-x^2}{x+1}+\dfrac{2x+1}{x+1}\)

P=\(\dfrac{-x^2+2x+2}{x+1}\)

 

7 tháng 7 2021

\(3x\left(x+1\right)-2x\left(x+2\right)=1+x^2\)

3x2+3x-2x2-4x=1+x2

3x2+3x-2x2-4x-x2=1

x=-1

vậy............

 

1 tháng 9 2021

\(|-2x+1,5|=\dfrac{1}{4}\Rightarrow-2x+1,5=\pm\dfrac{1}{4}\)

\(-2x+1,5=\dfrac{1}{4}\Rightarrow-2x=1,5-0,25\Rightarrow-2x=1,25\Rightarrow x=1,25:\left(-2\right)\Rightarrow x=...\)

\(-2x+1,5=-\dfrac{1}{4}\Rightarrow-2x=-0,25-1,5\Rightarrow-2x=1,75\Rightarrow x=1,75:\left(-2\right)\Rightarrow x=...\)

1 tháng 9 2021

\(\dfrac{3}{2}-|1.\dfrac{1}{4}+3x|=\dfrac{1}{4}\Rightarrow|1.\dfrac{1}{4}+3x|=\dfrac{3}{2}-\dfrac{1}{4}\Rightarrow|1.\dfrac{1}{4}+3x|=\dfrac{5}{4}\)

\(\Rightarrow1.\dfrac{1}{4}+3x=\pm\dfrac{5}{4}\)

\(1.\dfrac{1}{4}+3x=\dfrac{5}{4}\Rightarrow\dfrac{1}{4}+3x=\dfrac{5}{4}\Rightarrow3x=\dfrac{5}{4}-\dfrac{1}{4}\Rightarrow3x=1\Rightarrow x=3\)

\(1.\dfrac{1}{4}+3x=-\dfrac{5}{4}\Rightarrow\dfrac{1}{4}+3x=-\dfrac{5}{4}\Rightarrow3x=-\dfrac{5}{4}-\dfrac{1}{4}\Rightarrow3x=-\dfrac{3}{2}x=...\)

27 tháng 8 2023

\(\left|x+1\right|-\left|-2x-2\right|=2\)

\(\Leftrightarrow\left|x+1\right|-\left|-2\left(x+1\right)\right|=2\)

\(\Leftrightarrow\left|x+1\right|-2\left|x+1\right|=2\)

\(\Leftrightarrow-\left|x+1\right|=2\)

\(\Leftrightarrow\left|x+1\right|=-2\)

\(\Leftrightarrow\left|x+1\right|+2=0\)

Mà: \(\left|x+1\right|\ge0\forall x\Rightarrow\left|x+1\right|+2\ge2>0\)

\(\Leftrightarrow\left|x+1\right|+2=0\) (vô lí)

Vậy phương trình vô nghiệm:

\(x\in\varnothing\)

=>|x+1|-2|x+1|=2

=>-|x+1|=2

=>|x+1|=-2(vô lý)

Vậy: \(x\in\varnothing\)

a: \(=\dfrac{x-2x-1}{x+1}=\dfrac{-\left(x+1\right)}{x+1}=-1\)

b: \(=\dfrac{2+2x}{x\left(x+1\right)}=\dfrac{2\left(x+1\right)}{x\left(x+1\right)}=\dfrac{2}{x}\)

c: \(=\dfrac{3x-1}{2\left(3x+1\right)}+\dfrac{3x+1}{2\left(3x-1\right)}-\dfrac{6x}{\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{9x^2-6x+1+9x^2+6x+1-12x}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{18x^2-12x+2}{2\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{2\left(3x-1\right)^2}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{3x-1}{3x+1}\)

7 tháng 10 2021

1) \(\Rightarrow16x^2+24x+9+9x^2-24x+16+4-25x^2=x\)

\(\Rightarrow x=29\)

2)

a) \(=x^2-9-x^2+6x-9=6x-18\)

b) \(=\left(3x-1+2x+1\right)^2=\left(5x\right)^2=25x^2\)

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

a) 

$|3x-2|=2x\Rightarrow x\geq 0$.

Xét 2 TH:

TH1: $x\geq \frac{2}{3}$ thì pt trở thành:

$3x-2=2x\Leftrightarrow x=2$ (thỏa mãn)

TH2: $0\leq x< \frac{2}{3}$ thì pt trở thành:

$2-3x=2x\Leftrightarrow x=\frac{2}{5}$ (thỏa mãn)

b) 

PT $\Rightarrow x\geq 0$

$\Rightarrow |4+2x|=4+2x$. PT trở thành:

$4+2x=4x\Leftrightarrow x=2$ (thỏa mãn)

 

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

c) 

Xét các TH sau:

TH1: $x\geq \frac{3}{2}$. Khi đó, pt trở thành:

$2x-3=-x+21$

$\Leftrightarrow x=8$ (thỏa mãn)

TH2: $x< \frac{3}{2}$. Khi đó, pt trở thành:

$3-2x=-x+21$

$\Leftrightarrow x=-18$ (thỏa mãn)

d) 

Từ PT suy ra $x-2\geq 0\Leftrightarrow x\geq 2(*)$

Khi đó: $|3x-1|=3x-1$. PT trở thành:
$3x-1=x-2$

$\Leftrightarrow 2x=-1<0\Rightarrow x<0$ (mâu thuẫn với $(*)$)

Vậy PT vô nghiệm.