K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2019

A B C H E D K

a) Xét tam giác AEB và tam giác HDB có:

\(\widehat{HDB}=\widehat{AEB}=90^o\)

\(\widehat{B}\)chung

=> \(\Delta EBA~\Delta DBH\)

b) Chứng minh tương tự như trên với hai tam giác AEC và HKC ta suy ra:

\(\frac{CA}{HC}=\frac{AE}{HK}\Rightarrow CA.HK=AE.HC\)(1)

c) Ta có: ​\(\Delta EBA~\Delta DBH\Rightarrow\frac{AE}{DH}=\frac{AB}{BH}\Rightarrow AB.DH=AE.BH\)(2)

Mà HC=HB (3)

Từ (1) (2), (3)=> CA.HK=AB.DH => CA/BA=DH/KH

9 tháng 9 2019

Câu hỏi của Phạm An Nguyên - Toán lớp 8 - Học toán với OnlineMath

9 tháng 9 2019

Câu hỏi của Phạm An Nguyên - Toán lớp 8 - Học toán với OnlineMath

a: Xét tứ giác HDEI có

\(\widehat{EDH}=\widehat{DHI}=\widehat{EIH}=90^0\)

=>HDEI là hình chữ nhật

b:

Xét ΔAHD có \(\widehat{AHD}=90^0\) và HA=HD

nên ΔAHD vuông cân tại H

=>\(\widehat{ADH}=45^0\)

Xét tứ giác AEDB có 

\(\widehat{EAB}+\widehat{EDB}=90^0+90^0=180^0\)

=>AEDB là tứ giác nội tiếp

=>\(\widehat{AEB}=\widehat{ADB}=\widehat{ADH}=45^0\)

Xét ΔAEB vuông tại A có \(\widehat{AEB}=45^0\)

nên ΔAEB vuông cân tại A

=>AE=AB

 

7 tháng 12 2023

cho mình xin cái hình đc ko

27 tháng 1 2016

bạn nhấn vào đúng 0 sẽ ra đáp án

27 tháng 1 2016

du

15 tháng 12 2017

a) Ta có tứ giác DIKC nội tiếp nên \(\widehat{DKI}=\widehat{ICD}\) (Hai góc nội tiếp cùng chắn cung ID)

Lại có tứ giác ABDC nội tiếp nên \(\widehat{ICD}=\widehat{BCD}=\widehat{BAD}=\widehat{HAD}\)(Hai góc nội tiếp cùng chắn cung BD)

Tứ giác AHDK cũng nội tiếp nên \(\widehat{HAD}=\widehat{DKH}\)(Hai góc nội tiếp cùng chắn cung HD) 

Vậy nên \(\widehat{DKI}=\widehat{DKH}\) hay H, K, I thẳng hàng.

15 tháng 12 2017

Cảm ơn cô nhưng em cần câu b và câu c