K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 3 2019

ĐKXĐ: \(-3< x< 3\)

\(\Leftrightarrow\frac{\left(2x\right)^3}{\sqrt{9-x^2}}=9-x^2\Leftrightarrow\left(2x\right)^3=\left(9-x^2\right)\sqrt{9-x^2}\)

\(\Leftrightarrow\left(2x\right)^3=\left(\sqrt{9-x^2}\right)^3\Leftrightarrow2x=\sqrt{9-x^2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\4x^2=9-x^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\5x^2=9\end{matrix}\right.\) \(\Rightarrow x=\frac{3\sqrt{5}}{5}\)

17 tháng 9 2021

\(1.\sqrt{16-8x+x^2}=4-x\)

\(\sqrt{\left(4-x\right)^2}=4-x\)

\(4-x-4+x=0\)

= 0 phương trình vô nghiệm.

\(2.\sqrt{4x^2-12x+9}=2x-3\)

\(\)\(\sqrt{\left(2x-3\right)^2}=2x-3\)

\(2x-3-2x+3=0\)

= 0 phương trình vô nghiệm.

a: Ta có: \(\sqrt{16-8x+x^2}=4-x\)

\(\Leftrightarrow\left|4-x\right|=4-x\)

hay \(x\le4\)

b: Ta có: \(\sqrt{4x^2-12x+9}=2x-3\)

\(\Leftrightarrow\left|2x-3\right|=2x-3\)

hay \(x\ge\dfrac{3}{2}\)

30 tháng 11 2019

Violympic toán 9

1 tháng 12 2019

Violympic toán 9

4 tháng 2 2016

ĐK: x>0

Đặt a=1/x ta được: a>0

\(a+\frac{1}{3}=\sqrt{\frac{1}{9}+a\sqrt{\frac{4}{9}+2a^2}}\)

\(\Leftrightarrow a^2+\frac{1}{9}+\frac{2}{3}a=\frac{1}{9}+a\sqrt{\frac{4}{9}+2a^2}\)

<=>\(a^2+\frac{2}{3}a=a\sqrt{\frac{4}{9}+2a^2}\)

<=>\(a.\left(a+\frac{2}{3}\right)=a\sqrt{\frac{4}{9}+2a^2}\)

<=>\(a+\frac{2}{3}=\sqrt{\frac{4}{9}+2a^2}\)

<=>\(a^2+\frac{4}{9}+\frac{4}{3}a=\frac{4}{9}+2a^2\)

<=>\(a^2-\frac{4}{3}a=0\Leftrightarrow a=0\left(loại\right);a=\frac{4}{3}\)

<=>\(x=\frac{3}{4}\)(loại -3/2)

Vậy x=3/4

19 tháng 9 2018

ĐKXĐ: \(-3\le x\le3;x\ne0\)

Đặt \(\sqrt{9-x^2}=a\left(a\ge0;a\ne3\right)\Rightarrow x^2=9-a^2\),khi đó pt đã cho trở thành:

\(\frac{9-a^2}{3+a}+\frac{1}{4\left(3-a\right)}=1\)

\(\Rightarrow3-a+\frac{1}{4\left(3-a\right)}=1\)

\(\Rightarrow\frac{4\cdot\left(3-a\right)^2+1}{4\left(3-a\right)}=1\Rightarrow4a^2-24a+37=12-4a\)

\(\Rightarrow4a^2-20a+25=0\Rightarrow\left(2a-5\right)^2=0\Rightarrow2a-5=0\)

\(\Rightarrow a=\frac{5}{2}\)(tm điều kiện),theo cách đặt ta có

\(\sqrt{9-x^2}=\frac{5}{2}\Rightarrow9-x^2=\frac{25}{4}\Rightarrow x^2=\frac{11}{4}\Rightarrow x=\frac{\sqrt{11}}{2}\)(TMĐKXĐ)

Vậy pt đã cho có nghiệm duy nhất là \(x=\frac{\sqrt{11}}{2}\)

4 tháng 2 2016

= $\frac{3+x}{3x}=\sqrt{\frac{1}{9}+\frac{1}{x}\sqrt{\frac{4}{9}+\frac{2}{x^2}}}$3+x3x =√19 ‍+1x √49 +2x2