K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2019

\(\sqrt{-3x^3+5x+14}+\sqrt{-5x^3+6x+28}=\left(4-2x-x^2\right)\sqrt{2-x}\) (ĐKXĐ: \(x\in R,x\le2\))

\(\Leftrightarrow\sqrt{\left(2-x\right)\left(3x^2+6x+7\right)}+\sqrt{\left(2-x\right)\left(5x^2+10x+14\right)}-\left(4-2x-x^2\right)\sqrt{2-x}=0\)

\(\Leftrightarrow\sqrt{2-x}\left(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}-4+2x+x^2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\left(1\right)\end{cases}}\)

Pt \(\left(1\right)\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=-\left(x+1\right)^2+5\left(2\right)\)

Ta có: \(\left(x+1\right)^2\ge0\Rightarrow\sqrt{2\left(x+1\right)^2+4}\ge\sqrt{4}=2\)

Tương tự: \(\sqrt{5\left(x+1\right)^2+9}\ge3\). Từ đó: \(VT_{\left(2\right)}\)\(\ge2+3=5\)

Mà \(VP_{\left(2\right)}=-\left(x+1\right)^2+5\le5\) nên dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)(tm)

Vậy tập nghiệm của pt cho là \(S=\left\{2;-1\right\}.\)

7 tháng 11 2021

ĐK: \(x\ge\dfrac{5}{3}\)

Ta có: \(\sqrt{2x+5}=2+\sqrt{3x-5}\)

      \(\Leftrightarrow2x+5=4+3x-5+4\sqrt{3x-5}\)

      \(\Leftrightarrow6-x=4\sqrt{3x-5}\)                    ĐK: x≤6

      \(\Leftrightarrow36-12x+x^2=48x-80\)

      \(\Leftrightarrow x^2-60x+116=0\)

      \(\Leftrightarrow\left(x-2\right)\left(x-58\right)=0\)

      \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=58\end{matrix}\right.\)

So với điều kiện thì phương trình có nghiệm duy nhất là x = 2

7 tháng 11 2021

\(ĐK:x\ge\dfrac{5}{3}\\ PT\Leftrightarrow\left(\sqrt{2x+5}-3\right)-\left(\sqrt{3x-5}-1\right)=0\\ \Leftrightarrow\dfrac{2x-4}{\sqrt{2x+5}+3}-\dfrac{3x-6}{\sqrt{3x-5}+1}=0\\ \Leftrightarrow\left(x-2\right)\left(\dfrac{2}{\sqrt{2x+5}+3}-\dfrac{3}{\sqrt{3x-5}+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\dfrac{2}{\sqrt{2x+5}+3}=\dfrac{3}{\sqrt{3x-5}+1}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2\sqrt{3x-5}+2=3\sqrt{2x+5}+9\\ \Leftrightarrow2\sqrt{3x-5}=7+3\sqrt{2x+5}\\ \Leftrightarrow4\left(3x-5\right)=49+9\left(2x+5\right)+42\sqrt{2x+5}\\ \Leftrightarrow12x-20=49+18x+45+42\sqrt{2x+5}\\ \Leftrightarrow-6x-144=42\sqrt{2x+5}\)

Vì \(x\ge\dfrac{5}{3}>0\Leftrightarrow-6x-144< 0< 42\sqrt{2x+5}\)

Do đó (1) vô nghiệm

Vậy PT có nghiệm \(x=2\)

9 tháng 2 2020

 \(\hept{\begin{cases}x^3-6x^2y+9xy^2-4y^3=0\left(1\right)\\\sqrt{x-y}+\sqrt{x+y}=2\left(2\right)\end{cases}}\)

ĐKXĐ: \(x\ge y\ge0\)

ta có: (1)\(\Leftrightarrow\left(x^3-y^3\right)-3y^3-9x^2y+3x^2y+9xy^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+3y\left(x^2-y^2\right)-9xy\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+3y\left(x+y\right)-9xy\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-5xy+4y^2\right)=0\)

\(\orbr{\begin{cases}x=y\\x^2-5xy+4y^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=y\\\left(x-y\right)\left(x-4y\right)=0\end{cases}}}\)\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=4y\end{cases}}\)

* Thay x=y vào phương trình (2), ta được: \(\sqrt{y-y}+\sqrt{2y}=2\Leftrightarrow y=2\Rightarrow x=y=2\)

* thay x=4y vào phương trình (2), ta được: \(\sqrt{4y-y}+\sqrt{4y+y}=2\)

\(\Leftrightarrow y=8-2\sqrt{15}\)\(\Rightarrow x=32-8\sqrt{15}\)

Vậy.......

12 tháng 3 2019

ai giúp vớ cần gấp

12 tháng 3 2019

ĐK: \(\frac{2}{3}\le x\le\frac{3}{2}\)

(Vế phải và vế trái đều không âm nên có thể bình phương 2 vế theo một phương trình tương đương)

pt <=> \(x^2\left(3x-2\right)+\left(3-2x\right)+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}=x^3+x^2+x+1\)

<=> \(3x^3-2x^2+3-2x+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}-x^3-x^2-x-1=0\)

<=> \(2x^3-3x^2+2-3x+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}=0\)

<=> \(x^2\left(2x-3\right)+\left(2-3x\right)+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}=0\)

<=> \(-x^2\left(3-2x\right)-\left(3x-2\right)+2\sqrt{\left(3x-2\right).x^2\left(3-2x\right)}=0\)

<=> \(x^2\left(3-2x\right)+\left(3x-2\right)-2\sqrt{\left(3x-2\right).x^2\left(3-2x\right)}=0\)

<=> \(\left(\sqrt{x^2\left(3-2x\right)}-\sqrt{3x-2}\right)^2=0\)

<=> \(\sqrt{x^2\left(3-2x\right)}-\sqrt{3x-2}=0\)

<=> \(\sqrt{x^2\left(3-2x\right)}=\sqrt{3x-2}\)

<=> \(x^2\left(3-2x\right)=3x-2\)

<=> \(-2x^3+3x^2-3x+2=0\)

<=> \(\left(x-1\right)\left(-2x^2+x-2\right)=0\)

<=> x=1  (tm) 

12 tháng 3 2019

ĐKXĐ: \(\frac{2}{3}\le x\le\frac{3}{2};x\in R\)

Pt cho tương đương: \(x\sqrt{3x-2}+\sqrt{3-2x}=\sqrt{\left(x+1\right)\left(x^2+1\right)}\)

Đặt \(\sqrt{3x-2}=a;\sqrt{3-2x}=b\left(a,b\ge0\right)\). Khi đó, ta được phương trình:

\(ax+b=\sqrt{\left(a^2+b^2\right)\left(x^2+1\right)}\Leftrightarrow a^2x^2+2abx+b^2=a^2x^2+b^2x^2+a^2+b^2\)

\(\Leftrightarrow2abx-b^2x^2-a^2=0\Leftrightarrow a^2-2abx+b^2x^2=0\)

\(\Leftrightarrow\left(a-bx\right)^2=0\Leftrightarrow a=bx\) hay \(\sqrt{3x-2}=x\sqrt{3-2x}\Leftrightarrow3x-2=3x^2-2x^3\)

\(\Leftrightarrow2x^3-3x^2+3x-2=0\Leftrightarrow2\left(x-1\right)\left(x^2+x+1\right)-3x\left(x-1\right)=9\)

\(\Leftrightarrow\left(x-1\right)\left(2x^2-x+2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\2x^2-x+2=0\left(vn\right)\end{cases}}\)

Vậy PT cho có nghiệm duy nhất x=1.

12 tháng 3 2019

Cái chỗ " 2(x-1)(x2+x+1) - 3x(x-1) = 9" bn sửa 9 thành 0 nhé, tại mik gõ vội :(

21 tháng 11 2018

về hỏi cô giáo ấy

5 tháng 7 2021

Đk:\(3\le x\le7\)

Có \(\left(\sqrt{x-3}+\sqrt{7-x}\right)^2=4+2\sqrt{\left(x-3\right)\left(7-x\right)}\ge4;\forall3\le x\le7\)

\(\Leftrightarrow\sqrt{x-3}+\sqrt{7-x}\ge2\) (I)

Có \(6x-7-x^2=2-\left(x^2-6x+9\right)=2-\left(x-3\right)^2\le2\) (II)

Từ (I) và (II) => Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{\left(x-3\right)\left(7-x\right)}=0\\x-3=0\end{matrix}\right.\)\(\Rightarrow x=3\) (tm)

Vậy...

NV
5 tháng 7 2021

ĐKXĐ: \(3\le x\le7\)

Ta có:

\(VT=\sqrt{x-3}+\sqrt{7-x}\ge\sqrt{x-3+7-x}=2\)

\(VP=2-\left(x-3\right)^2\le2\)

\(\Rightarrow VT\ge VP\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left(x-3\right)\left(7-x\right)=0\\\left(x-3\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow x=3\)

Vậy pt có nghiệm duy nhất \(x=3\)