Cho n>1 , n thuộc N , A = n6 - n4 + 2n3 + 2n2 .Chứng minh A không là số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n \(\ge\) 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33
Còn 5!; 6!; …; n! đều tận cùng bởi 0
Do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3
Mà các số có chữ số tận cùng là chữ số 3 không thể là số chính phương nên nó không phải là số chính phương (đpcm)
Với n $\ge$≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33
Còn 5!; 6!; …; n! đều tận cùng bởi 0
Do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3
Mà các số có chữ số tận cùng là chữ số 3 không thể là số chính phương nên nó không phải là số chính phương (đpcm)
A = n 4 – 2 n 3 – n 2 +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó A ⋮ 24 .
n6 - n4 + 2n3 + 2n2
= n2 . (n4 - n2 + 2n +2)
= n2 . [n2(n - 1)(n + 1) + 2(n + 1)]
= n2 . [(n + 1)(n3 - n2 + 2)]
= n2 . (n + 1) . [(n3 + 1) - (n2 - 1)]
= n2. (n + 1)2 . (n2 - 2n + 2)
Với n ∈ N, n > 1 thì n2 - 2n + 2 = (n - 1)2 + 1 > (n - 1)2
Và n2 - 2n + 2 = n2 - 2(n - 1) < n2
Vậy (n - 1)2 < n2 - 2n + 2 < n2
=> n2 - 2n + 2 không phải là một số chính phương.
\(A=x^6-x^4+2x^3+2x^2\)
\(=x^2\left(x^4-x^2+2x+2\right)\)
\(=x^2\left(x^4+2x^3+x^2-2x^3-4x^2-2x+2x^2+4x+2\right)\)
\(=x^2\left[x^2\left(x^2+2x+1\right)-2x\left(x^2+2x+1\right)+2\left(x^2+2x+1\right)\right]\)
\(=x^2\left(x^2-2x+2\right)\left(x+1\right)^2\)
\(=x^2\left(x+1\right)^2\left[\left(x-1\right)^2+1\right]\)
Với \(x>1\)thì \(\left(x-1\right)^2+1\)không là số chính phương
Vậy A không là số chính phương
\(A=n^6-n^4+2n^3+2n^2\)
\(=n^2\left(n^4-n^2+2n+2\right)=n^2[n^2\left(n^2-1\right)+2\left(n+1\right)]\)
\(=n^2\left[\left(n+1\right)\left(n^3-n+2\right)\right]=n^2\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\)
\(=n^2\left(n+1\right)\left(n+1\right)\left(n^2-2n+2\right)=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
Xét \(n^2-2n+2\)
Ta có: \(n^2-2n+2=n^2-2n+1+1=\left(n-1\right)^2+1>\left(n-1\right)^2\)
Lại có: \(n^2-2n+2=n^2-\left(2n-2\right)< n^2\)
\(\Rightarrow\left(n-1\right)^2< n^2-2n+2< n^2\)
Mà \(\left(n-1\right)^2;n^2\)là hai số chính phương liên tiếp.
\(\Rightarrow n^2-2n+2\)không thể là số chính phương.
\(\Rightarrow n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)không thể là số chính phương.
Vậy A không là số chính phương.