K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2019

Ta có: \(P=\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}=\frac{\left(x^3+1\right)\left(x+1\right)}{x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)}\)

                                                                                                                   \(=\frac{\left(x+1\right)\left(x^2-x+1\right)\left(x+1\right)}{\left(x^2-x+1\right)\left(x^2+1\right)}=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}\)

Vì \(\hept{\begin{cases}x^2+1\ge1>0\\x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\end{cases}}\)

Nên mẫu số luôn luôn khác 0

Do đó: \(P=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}\)

Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)}\) nên \(P\ge0\left(\forall x\right)\)

12 tháng 5 2020

\(P=\frac{x^4+x^2+x+1}{x^4-x^2+2x^2-x+1}=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}\)

Do \(\left(x^2+1\right)\left(x^2-x+1\right)\ne0\)do đó không cần điều kiện của x

Vậy \(P=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}\)

\(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\x^2+1>0\forall x\end{cases}\Rightarrow P\ge0\forall x}\)

10 tháng 9 2016

co gi pm nha buon ngu qua

3 tháng 8 2020

\(A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+21\left(x^2+1\right)^2-\left(x^2+1\right)-30\)

Ta thấy  \(x^2+1\ge1>0\forall x\)

\(\Rightarrow\left(x^2+1\right)^2\ge\left(x^2+1\right)\forall x\ge0\)

\(\Leftrightarrow\left(x^2+1\right)^2-\left(x^2+1\right)\ge0\)

\(\Rightarrow A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+20\left(x^2+1\right)^2+\left(x^2+1\right)^2-\left(x^2+1\right)-30\)

\(\ge1^4+9.1^4+20.1^2+0-30=0\)

\(\Rightarrow Min.A=0\Leftrightarrow x^2+1=1\Leftrightarrow x=0\)

Vậy A luôn không âm với mọi giá trị của biến.

a: \(A=\dfrac{3\left(1-2x\right)}{2x\left(x^2+1\right)-\left(x^2+1\right)}\)

\(=\dfrac{-3\left(2x-1\right)}{\left(x^2+1\right)\left(2x-1\right)}=\dfrac{-3}{x^2+1}\)

b: Khi x=3 thì \(A=\dfrac{-3}{3^2+1}=-\dfrac{3}{10}\)

c: x^2+1>=0

=>3/x^2+1>=0

=>-3/x^2+1<=0

=>A<=0(ĐPCM)

11 tháng 5 2020

\(x^4+x^3+x+1=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)=\left(x+1\right)^2\left(x^2-x+1\right)\)

\(x^4-x^3+2x^2-x+1=\left(x^4-x^3+x^2\right)+\left(x^2-x+1\right)=\left(x^2-x+1\right)\left(x^2+1\right)\)

Ta có: \(\left(x+1\right)^2\ge0;\forall x\)

\(x^2+1>1\)\(\forall x\)

\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0,\forall x\)

Vậy \(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{\left(x+1\right)^2}{x^2+1}\ge0;\forall x\)

11 tháng 2 2016

a)  \(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}\)

\(=\frac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}\)

\(=\frac{\left(x+1\right)\left(x^3+1\right)}{x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)}\)

\(=\frac{\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^2-x+1\right)\left(x^2+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}\)

 

b) Xét tử  ta có:  \(\left(x+1\right)^2\ge0\)         (1)

   Xét mấu ta có:  \(x^2\ge0\Rightarrow x^2+1\ge1>0\)  (2)

Từ (1) và (2) \(\Rightarrow\) Phân thức trên k âm với mọi x   

19 tháng 7 2021

3b : Ta có : \(P=2x\left(x+y-1\right)+y^2+1=2x^2+2xy-2x+y^2+1\)

\(=x^2+2xy+y^2+x^2-2x+1=\left(x+y\right)^2+\left(x-1\right)^2\)

Vậy biểu thức luôn nhận giá trị ko âm với mọi x ; y 

1 tháng 3 2018

Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: 
a) 9x^2+12x-15 
=-(9x^2-12x+4+11) 
=-[(3x-2)^2+11] 
=-(3x-2)^2 - 11. 
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x. 
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x. 

b) -5 – (x-1)*(x+2) 
= -5-(x^2+x-2) 
=-5- (x^2+2x.1/2 +1/4 - 1/4-2) 
=-5-[(x-1/2)^2 -9/4] 
=-5-(x-1/2)^2 +9/4 
=-11/4 - (x-1/2)^2 
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x. 
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x. 

Bài 2) 
a) x^4+x^2+2 
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x 
suy ra x^4+x^2+2 >=2 
Hay x^4+x^2+2 luôn dương với mọi x. 

b) (x+3)*(x-11) + 2003 
= x^2-8x-33 +2003 
=x^2-8x+16b + 1954 
=(x-4)^2 + 1954 >=1954 
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến

1 tháng 3 2018

bị ''rảnh'' ak ? 

tự hỏi r tự trả lời