K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2019

CMR: \(5.7^{2\left(n+1\right)}+2^{3n}⋮41\) (*)

Với \(n=1\) ta có \(5.7^4+2^3=12013⋮41\)

=> (*) đúng với n = 1

Gỉa sử (*) đúng với n = k tức là: \(5.7^{2\left(k+1\right)}+2^{3k}⋮41\)

hay \(5.7^{2\left(k+1\right)}+2^{3k}=41m\)

Ta cần chứng minh (*) đúng với n = k + 1

tức là \(5.7^{2\left(k+2\right)}+2^{3\left(k+1\right)}⋮41\)

Thật vậy \(5.7^{2\left(k+2\right)}+2^{3\left(k+1\right)}=5.7^{2\left(k+1\right)}.7^2+2^{3k}.2^3\)

\(=7\left(5.7^{2k+1}+2^{3k}\right)-\left(7^2-2^3\right).2^{3k}\)

\(=7.41m-41.2^{3k}=41\left(7m-2^{3k}\right)⋮41\)\(\Rightarrowđpcm\)

17 tháng 10 2018

????? đề j kì zể???

21 tháng 10 2022

a: \(=n^3+2n^2-3n^2-6n+n+2-n^3+2\)

\(=-n^2+5n\)

Cái này nếu n=1 thì ko thỏa mãn nha bạn

b: \(=6n^2+30n+n+5-6n^2+30n-10n+50\)

\(=49n+55\)

Nếu n là số lẻ thì 49n+55 chia hết cho 2

Còn nếu n là số chẵn thì 49n+55 ko chia hết cho 2 nha bạn

27 tháng 6 2017

a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

\(\Rightarrowđpcm\)

b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+31n+5-6n^2-7n+5\)

\(=24n+10=2\left(12n+5\right)⋮2\)

\(\Rightarrowđpcm\)

27 tháng 6 2017

a)

= n3 + 2n2 + 3n2 + 6n - n - 2 + 2

= 5n2 + 5n

= 5(n2 + n ) chia hết cho 5

b)

= 2(12n +5) chia hết cho 2