Cho đa thức ∫∫(x)=x3+mx+n với m,n ϵ Z. Xác định m và n biết ∫∫(x) chia cho x-1 thì dư 4:∫∫(x) chia cho x+1 thì dư 6.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có f(x) - 5 \(⋮\)x + 1
=> x3 + mx2 + nx + 2 - 5 \(⋮\)x + 1
=> x3 + mx2 + nx - 3 \(⋮\)x + 1
=> x = - 1 là nghiệm đa thức
Khi đó (-1)3 + m(-1)2 + n(-1) - 3 = 0
<=> m - n = 4 (1)
Tương tự ta được f(x) - 8 \(⋮\)x + 2
=> x3 + mx2 + nx - 6 \(⋮\) x + 2
=> x = -2 là nghiệm đa thức
=> (-2)3 + m(-2)2 + n(-2) - 6 = 0
<=> 2m - n = 7 (2)
Từ (1)(2) => HPT \(\left\{{}\begin{matrix}m-n=4\\2m-n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\n=-1\end{matrix}\right.\)
Vậy đa thức đó là f(x) = x3 + 3x2 - x + 2
b) f(x) - 7 \(⋮\)x + 1
=> x3 + mx + n - 7 \(⋮\) x + 1
=> x = -1 là nghiệm đa thức
=> (-1)3 + m(-1) + n - 7 = 0
<=> -m + n = 8 (1)
Tương tự ta được : x3 + mx + n + 5 \(⋮\)x - 3
=> x = 3 là nghiệm đa thức
=> 33 + 3m + n + 5 = 0
<=> 3m + n = -32 (2)
Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}3m+n=-32\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m=-40\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-10\\n=-2\end{matrix}\right.\)
Vậy f(x) = x3 - 10x -2
Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
Gọi thương của phép chia đa thức \(f\left(x\right)\)cho \(x-1\)và cho \(x+2\), theo thứ tự là \(A\left(x\right),B\left(x\right)\)và dư theo thứ tự là \(4\) và \(1\)
Ta có:
\(f\left(x\right)=\left(x-1\right).A\left(x\right)+4\)
nên \(\left(x+2\right)f\left(x\right)=\left(x-1\right)\left(x+2\right).A\left(x\right)+4\left(x+2\right)\) \(\left(1\right)\)
\(f\left(x\right)=\left(x+2\right).B\left(x\right)+1\)
nên \(\left(x-1\right)f\left(x\right)=\left(x+2\right)\left(x-1\right).B\left(x\right)+1\left(x-1\right)\) \(\left(2\right)\)
Lấy \(\left(1\right)\)trừ \(\left(2\right)\) vế theo vế, ta có:
\(\left[\left(x+2\right)-\left(x-1\right)\right]f\left(x\right)=\left(x-1\right)\left(x+2\right)\left[A\left(x\right)-B\left(x\right)+4\left(x+2\right)-1\left(x-1\right)\right]\)
\(\Leftrightarrow3f\left(x\right)=\left(x-1\right)\left(x+2\right)\left[A\left(x\right)-B\left(x\right)\right]+3x+9\)
Do đó: \(f\left(x\right)=\left(x-1\right)\left(x+2\right)\frac{A\left(x\right)-B\left(x\right)}{3}+\left(x+3\right)\)
\(\Leftrightarrow f\left(x\right)=5x^2\left(x-1\right)\left(x+2\right)+\left(x+3\right)\)
trong đó, bậc của \(x+3\) nhỏ hơn bậc của \(\left(x-1\right)\left(x+2\right)\)
Vậy, dư của phép chia \(f\left(x\right)\) cho \(\left(x-1\right)\left(x+2\right)\)là \(x+3\)
Gọi thương của phép chia đa thức f(x)f(x)cho x−1x−1và cho x+2x+2, theo thứ tự là A(x),B(x)A(x),B(x)và dư theo thứ tự là 44 và 11
Ta có:
f(x)=(x−1).A(x)+4f(x)=(x−1).A(x)+4
nên (x+2)f(x)=(x−1)(x+2).A(x)+4(x+2)(x+2)f(x)=(x−1)(x+2).A(x)+4(x+2) (1)(1)
f(x)=(x+2).B(x)+1f(x)=(x+2).B(x)+1
nên (x−1)f(x)=(x+2)(x−1).B(x)+1(x−1)(x−1)f(x)=(x+2)(x−1).B(x)+1(x−1) (2)(2)
Lấy (1)(1)trừ (2)(2) vế theo vế, ta có:
[(x+2)−(x−1)]f(x)=(x−1)(x+2)[A(x)−B(x)+4(x+2)−1(x−1)][(x+2)−(x−1)]f(x)=(x−1)(x+2)[A(x)−B(x)+4(x+2)−1(x−1)]
⇔3f(x)=(x−1)(x+2)[A(x)−B(x)]+3x+9⇔3f(x)=(x−1)(x+2)[A(x)−B(x)]+3x+9
Do đó: f(x)=(x−1)(x+2)A(x)−B(x)3+(x+3)f(x)=(x−1)(x+2)A(x)−B(x)3+(x+3)
⇔f(x)=5x2(x−1)(x+2)+(x+3)
Để \(f\left(x\right):\left(x-1\right)R4\) thì \(x^3+mx+n=\left(x-1\right)\cdot a\left(x\right)+4\)
Thay \(x=1\Leftrightarrow m+n=4\left(1\right)\)
Để \(f\left(x\right):\left(x+1\right)R6\) thì \(x^3+mx+n=\left(x+1\right)\cdot b\left(x\right)+6\)
Thay \(x=-1\Leftrightarrow n-m-1=6\Leftrightarrow n-m=7\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}m=\left(4-7\right):2=-\dfrac{3}{2}\\n=7+\left(-\dfrac{3}{2}\right)=\dfrac{11}{2}\end{matrix}\right.\)
Theo định lý Bơ du ta có:
Số dư của f(x) cho x-1 là \(f\left(1\right)\)
\(\Rightarrow f\left(1\right)=4\Rightarrow1+m+n=4\Leftrightarrow m+n=3\left(1\right)\)
Số dư của f(x) cho x+1 là \(f\left(-1\right)\)
\(\Rightarrow f\left(-1\right)=6\Rightarrow-1-m+n=6\Leftrightarrow-m+n=7\left(2\right)\)
Từ (1) và (2) ta có:
\(\left\{{}\begin{matrix}m=-2\\n=5\end{matrix}\right.\)