K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2019

Câu hỏi của Bỉ Ngạn Hoa - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé!

14 tháng 3 2020

5234kg....................tạ   

6005dm2...............m2

4027mm.....................m ...................mm

4,25tan....................kg

32,9km2......................hm2

68dm2....................m2

28 tháng 2 2019

A B C M H N

Ta có:

BM=BA

=> Tam giác ABM cân tại B

=> \(\widehat{BAM}=\widehat{BMA}\)

mà \(\widehat{BAM}+\widehat{MAC}=90^o\)

=> \(\widehat{BMA}+\widehat{MAC}=90^o\)

mặt khác \(\widehat{HMA}+\widehat{HAM}=90^o\)

=> \(\widehat{HAM}=\widehat{MAC}\)(1)

Ta có: AH=AN (2)

AM chung (3)

=>Tam giác AHM=ANM

=> \(\widehat{ANM}=\widehat{AHM}=90^o\)

=> AC vuông MN

b) => Tam giác MNC vuông tại N có cạnh huyền MC

=> MC>NC

=> AN+BC=BM+MC+AN=AB+MC+AN>AB+NC+AN=AB+BC

=> dpcm

18 tháng 4 2020

Cho tam giác ABC có vuông tại A AH vuông góc BC cmr AH+BC>AB +AC

29 tháng 2 2020

A B C H M N

a) Nối AM

Do BA = BM => △ABM cân tại A

=> BAM = BMA 

Ta có: BAM + MAN = 90o => BMA + MAN = 90o

Lại có: MAN + AMN = 90o (△MAN vuông tại N)

=> HMA = NMA

Xét △HMA và △NMA có:

MHA = MNA (= 90o)

AM: chung

HMA = NMA (cmt)

=> △HMA = △NMA (ch-gn)

=> AH = AN (2 cạnh tương ứng)

=> △AHN cân tại A

b) Xét △ABC vuông tại A

=> BC2 = AB2 + AC2 (định lí Pytago)

=> AB2 + AC2 + AH > AB2 + AC2

=> BC + AH > AB + AC

c) Câu này hình như phải là chứng minh 2AC2 - BC2 = CH2 - BH2 chứ nhỉ? Nếu vậy thì cách làm như sau:

Xét △HAC vuông tại H

=> AC2 = HC2 + HA2 (định lí Pytago)

=> HC2 = AC2 - HA2

Xét △BHA vuông tại H

=> AB2 = HB2 + HA2 (định lí Pytago)

=> HB2 = AB2 - HA2

Khi đó:

CH2 - BH2 = AC2 - HA2 - AB2 + HA2

=> CH2 - BH2 = AC2 - AB2

=> CH2 - BH2 = AC2 + AC2 - BC2 (đpcm)

15 tháng 4 2021

nhờ các bạn giúp

Mk cần gấp hôm nay để mai nộp

27 tháng 1 2021

Xét tg BAD có: BD = BA(gt) =>  tg BAD cân tại B 

=> ^BAD = ^BDA (TC tg cân)

Ta có: ^BAD + ^CAD = ^BAC = 90 độ

Mà ^CAD + ^ADE =  ^DEA = 90 độ

=>  ^BAD = ^ADE

Lại có: ^BAD = ^BDA (tg BAD cân tại B )

=> ^ADE = ^BDA

Xét tg vuông AHD và tg vuông ADE:

^ADE = ^BDA (cmt)

AD chung

=> tg vuông AHD = tg vuông ADE (ch - gn)

=> AE = AH ( 2 cạnh tg ứng)

Xét ΔBAD có BA=BD(gt)

nên ΔBAD cân tại B(Định nghĩa tam giác cân)

nên \(\widehat{BAD}=\widehat{BDA}\)(hai góc ở đáy)

hay \(\widehat{BAD}=\widehat{HDA}\)(1)

Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)

nên \(\widehat{BAD}+\widehat{EAD}=90^0\)(2)

Ta có: ΔHDA vuông tại H(AH\(\perp\)HD)

nên \(\widehat{DAH}+\widehat{HDA}=90^0\)(hai góc nhọn phụ nhau)(3)

Từ (1), (2) và (3) suy ra \(\widehat{EAD}=\widehat{HAD}\)

Xét ΔADH vuông tại H và ΔAED vuông tại E có 

AD chung

\(\widehat{HAD}=\widehat{EAD}\)(cmt)

Do đó: ΔADH=ΔAED(cạnh huyền-góc nhọn)

hay AH=AE(hai cạnh tương ứng)