K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2019

\(P=\frac{n+2}{n-7}=\frac{n-7+9}{n-7}=1+\frac{9}{n-7}\)

P max => \(\frac{9}{n-7}max\)=> n-7 min và n-7>0 vì 9>0 và không đổi

=> n-7=1 => n=8

Vậy....

15 tháng 11 2023

Vũ™©®×÷|

5 tháng 6 2019

....

a) \(n\in\left(-1,1,3,5\right)\)thì A có giá trị nguyên

b) Ko hiểu

***

A=n+1n2n+1n−2

a. để B là phân số thì n-2 khác 0 => n khác 2

b.A=n+1n2n+1n−2n2+3n2n−2+3n−2n2n2n−2n−2+3n23n−2=1+3n23n−2

để B nguyên khi n-2 là ước của 3

ta có ước 3= (-1;1;3;-3)

nên n-2=1=> n=3

n-2=-1=> n=1

n-2=3=> n=5

n-2=-3=> n=-1

vậy để A nguyên thì n=(-1;1;3;5)

27 tháng 3 2017

Ta có: A= (n+1)/(n-2)=(n-2+3)/(n-2)=(n-2)/(n-2) +3/(n-2)= 1+3/(n-2)

a) để A là số nguyên thì n-2 phải là ước của 3

=> n-2={-3; -1; 1; 3}

=> n={-1; 1; 3; 5}

b) Để A đạt giá trị lớn nhất thì 3/(n-2) đạt giá trị dương lớn nhất => n-2 phải đạt giá trị dương nhỏ nhất => n-2=1=> n=3

Khi đó GTLN của A là: 1+3=4

6 tháng 6 2016

Ta có: \(D=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}\)\(=1+\frac{3}{n-2}\)

=> Để D đạt GTLN thì 3/n-2 đạt giá trị lớn nhất

Ta có 3>0 và 3/n-2 đạt GTLN => n-2 nhỏ nhất

=> n-2 là số nguyên dương nhỏ nhất

=> n-2=1 => n=3 thuộc Z

Vậy n=3 thì D có GTLN

18 tháng 8 2015

a) Để M là số nguyên.

=>n+4 chia hết cho n-2

=>n-2+6 chia hết cho n-2

=>6 chia hết cho n-2

=>n-2=Ư(6)=(-1,-2,-3,-6,1,2,3,6)

=>n=(1,0,-1,-4,3,4,5,8)

Vậy n=1,0,-1,-4,3,4,5,8 để M là số nguyên.

16 tháng 4 2020

A=\(\frac{2n+5}{n+1}\left(n\ne-1\right)\)

\(A=\frac{2\left(n+1\right)+3}{n+1}=2+\frac{3}{n+1}\)

để A đạt GTLN thì \(\frac{3}{n+1}\)đạt GTLN

=> n+1 là số nguyên dương nhỏ nhất

=> n+1=1

=> n=0 (tmđk)

*)làm tương tự với TH nhỏ nhất

16 tháng 4 2020

\(A=\frac{2n+5}{n+1}\left(n\ne-1\right)\)

\(A=\frac{2n+5}{n+1}=\frac{2\left(n+1\right)+3}{n+1}=2+\frac{3}{n+1}\)

* Để A đạt GTLN => \(\frac{3}{n+1}\)có GTLN 

=> n + 1 = số nguyên dương nhỏ nhất

=> n + 1 = 1

=> n = 0

Với n = 0 => \(A=2+\frac{3}{0+1}=2+3=5\)

Vậy MaxA = 5 khi n = 0

* GTNN thì mình chịu nhé xD *