Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Để A là phân số thì \(2n-1\ne0\Rightarrow n\ne\frac{1}{2}\)
b
A là số nguyên thì \(\frac{2n+4}{2n-1}=\frac{2n-1+5}{2n-1}=1+\frac{5}{2n+1}\inℤ\)
\(\Rightarrow\frac{5}{2n-1}\inℤ\)
\(\Rightarrow2n-1\in\left\{1;5;-1;-5\right\}\)
\(\Rightarrow n\in\left\{1;6;0;-2\right\}\)
c
\(A=\frac{1}{2}\Rightarrow\frac{2n+4}{2n-1}=\frac{1}{2}\Rightarrow4n+8=2n-1\Rightarrow2n+9=0\Rightarrow n=\frac{9}{2}\)
a, Để A thuộc z thì 4n + 1 chia hết cho 2n + 3
Mà 2n + 3 chia hết cho 2n + 3 => 2(2n + 3) chia hết cho 2n + 3
=> 4n + 1 - 2(2n + 3) chia hết cho 2n + 3
=> 4n + 1 - 4n - 6 chia hết cho 2n + 3
=> -5 chia hết cho 2n + 3
=> 2n + 3 thuộc {-1; 1; -5; 5}
=> 2n thuộc {-4; -2; -8; 2}
=> n thuộc {-2; -1; -4; 1}
b, Ta có:
\(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)
+ Để A nhỏ nhất thì \(\frac{5}{2n+3}\)lớn nhất => 2n + 3 nhỏ nhất dương (Vì 2n + 3 âm thì 5/2n+3 âm, 2n + 3 khác 0)
=> 2n + 3 = 1
=> 2n = -2
=> n = -1
+ Lớn nhất xét tương tự
a) \(P=\frac{n^2+n+n+1-5}{n+1}=\frac{n\left(n+1\right)+\left(n+1\right)-5}{n+1}\)
\(P=n+1+\frac{-5}{n+1}\)
\(P\in Z< =>n+1\inƯ\left(-5\right)\)
n+1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
Vậy \(P\in Z< =>x\in\left\{-6;-2;0;4\right\}\)
Ta có: A= (n+1)/(n-2)=(n-2+3)/(n-2)=(n-2)/(n-2) +3/(n-2)= 1+3/(n-2)
a) để A là số nguyên thì n-2 phải là ước của 3
=> n-2={-3; -1; 1; 3}
=> n={-1; 1; 3; 5}
b) Để A đạt giá trị lớn nhất thì 3/(n-2) đạt giá trị dương lớn nhất => n-2 phải đạt giá trị dương nhỏ nhất => n-2=1=> n=3
Khi đó GTLN của A là: 1+3=4
A=\(\frac{2n+5}{n+1}\left(n\ne-1\right)\)
\(A=\frac{2\left(n+1\right)+3}{n+1}=2+\frac{3}{n+1}\)
để A đạt GTLN thì \(\frac{3}{n+1}\)đạt GTLN
=> n+1 là số nguyên dương nhỏ nhất
=> n+1=1
=> n=0 (tmđk)
*)làm tương tự với TH nhỏ nhất
\(A=\frac{2n+5}{n+1}\left(n\ne-1\right)\)
\(A=\frac{2n+5}{n+1}=\frac{2\left(n+1\right)+3}{n+1}=2+\frac{3}{n+1}\)
* Để A đạt GTLN => \(\frac{3}{n+1}\)có GTLN
=> n + 1 = số nguyên dương nhỏ nhất
=> n + 1 = 1
=> n = 0
Với n = 0 => \(A=2+\frac{3}{0+1}=2+3=5\)
Vậy MaxA = 5 khi n = 0
* GTNN thì mình chịu nhé xD *