tìm số tự nhiên a nhỏ nhất sao cho : a cho 3,5,7 thì được số dư theo thứ tự 2,4,6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk nghĩ bài này của lớp 6 mới đúng :
tìm số tự nhiên a nhỏ nhất sao cho a chia cho 3,5,7 thì được số dư theo thứ tự là 2,3,4
Giải
a = 3m + 2 ( m € N ) => 2a = 6m + 4 chia 3 dư 1
a = 5n + 3 ( n € N ) => 2a = 10n + 6 chia 5 dư 1
a = 7p + 4 ( p € N ) => 2a = 14p + 8 chia 7 dư 1
Do đó 2a - 1 € BC ( 3,5,7)
Để a nhỏ nhất thì 2a - 1 là BCNN ( 3,5,7 )
BCNN ( 3,5,7) = 105
Mà 2a-1 = BCNN ( 3,5,7 )
=> 2a-1 = 105
2a = 105 + 1
2a = 106
a = 106 : 2
a = 53
Vậy a = 53
~~~hok tốt~~~
Vì a:3 dư 2 => a+1 chia hết cho 3=> a+1+3 chia hết cho 3=>a+1+3.7 chia hết cho 3=>a+52 chia hết cho 3
Vì a:5 dư 3 => a+2 chia hết cho 5=> a+2+5 chia hết cho 5=>a+2+5.7 chia hết cho 5=>a+52 chia hết cho 5
Vì a:7 dư 4 => a+3 chia hết cho 7=> a+3+7 chia hết cho 7=>a+3+7.7 chia hết cho 5=>a+52 chia hết cho 7
=>a+52 là BC của 3;5;7
Vì 3;5;7 là đôi một số nguyên tố nên BC của 3;5;7 = 3.5.7=105
=>a - 52=105
a=105-52
a= 53
Vậy số TN nhỏ nhất cần tìm là 53.
Vì a:3 dư 2 => a+1 chia hết cho 3=> a+1+3 chia hết cho 3=>a+1+3.7 chia hết cho 3=>a+52 chia hết cho 3
Vì a:5 dư 3 => a+2 chia hết cho 5=> a+2+5 chia hết cho 5=>a+2+5.7 chia hết cho 5=>a+52 chia hết cho 5
Vì a:7 dư 4 => a+3 chia hết cho 7=> a+3+7 chia hết cho 7=>a+3+7.7 chia hết cho 5=>a+52 chia hết cho 7
=>a+52 là BC của 3;5;7
Vì 3;5;7 là đôi một số nguyên tố nên BC của 3;5;7 = 3.5.7=105
=>a=52=105
a=105-52
a= 53
Vậy số TN nhỏ nhất cần tìm là 53.
Vì a:3 dư 2 => a+1 chia hết cho 3=> a+1+3 chia hết cho 3=>a+1+3.7 chia hết cho 3=>a+52 chia hết cho 3
Vì a:5 dư 3 => a+2 chia hết cho 5=> a+2+5 chia hết cho 5=>a+2+5.7 chia hết cho 5=>a+52 chia hết cho 5
Vì a:7 dư 4 => a+3 chia hết cho 7=> a+3+7 chia hết cho 7=>a+3+7.7 chia hết cho 5=>a+52 chia hết cho 7
=>a+52 là BC của 3;5;7
Vì 3;5;7 là đôi một số nguyên tố nên BC của 3;5;7 = 3.5.7=105
=>a=52=105
a=105-52
a= 53
Vậy số TN nhỏ nhất cần tìm là 53.
- theo bài ra , ta có :
a : 3 dư 2 ; a : 5 dư 4 ; a : 7 dư 6 và a là số tự nhiên nhỏ nhất .
=> a + 1 : 3 ; a + 1 : 5 ; a + 1 : 7 và a là số tự nhiên nhỏ nhất .
=> a + 1 ∈BCNN(3;5;7)
\(a-2⋮3\Rightarrow a-2+3=a+1⋮3\\ a-4⋮5\Rightarrow a-4+5=a+1⋮5\\ a-6⋮7\Rightarrow a-6+7=a+1⋮7\\ \Rightarrow a+1=BCNN\left(3,5,7\right)=105\left(a\text{ nhỏ nhất}\right)\\ \Rightarrow a=104\)
a : 3 dư 2
a : 5 dư 3
a : 7 dư 4
=> a+1+3 chia hết cho 3 => a+1+3.7 chia hết cho 3
Vây a+52 chia hết cho 3
=> a+2+5 chia hết cho 5 => a+2+5.7 chia hết cho 5
Vậy a+52 chia hết cho 5
=> a+3+7 chia hết cho 7 => a+3+7.7 chia hết cho 7
Vậy :
\(52 = BCNN(3,5,7)\)
Ta có :
3=3
5=5
7=7
BCNN(3,5,7) = 3.5.7 = 105
Vậy a = 53
Theo bài ta có:
(a+1):3
(a+1):5
(a+1):7 a nhỏ nhất
Suy ra (a+1) thuộc BCNN của 3;5;7
3=3
5=5
7=7
Suy ra (a+1) =3*5*7=105
(a+1)=105
a=105-1
a=104
Vậy số tự nhiên nhỏ nhất ,khi chia a cho 3,5,7 thì đc số dư lần lượt là 2,4,6 LÀ 104
NHỚ K CHO MÌNH NHẾ !
Gọi số cần tìm là a
Giả sử a chia cho 5 được b dư 3 ta có
a = 5b + 3
2a = 10b + 6 = 10b + 5 + 1
2a – 1 = 10b + 5 hay nói cách khác 2a – 1 chia hết cho 5(1)
giả sử a chia cho 7 được c dư 4 ta có
a = 7c + 4
2a = 14c + 8 = 14c + 7 + 1
2a – 1 = 14c + 7 hay nói cách khác 2a – 1 chia hết cho 7(2)
giả sử a chia cho 9 được d dư 5 ta có
a = 9a + 5
2a = 18d + 10 = 18d + 9 + 1
2a – 1 = 18d + 9 hay 2a – 1 chia hết cho 9(3)
từ 1, 2 và 3 ta có 2a - 1 chia cho 5, 7, 9 vì yêu cầu tìm số tự nhiên nhỏ nhất nên 2a – 1 là bội số chung nhỏ nhất của (5,7,9) = 5.7.9 = 315
suy ra 2a – 1 = 315
2a = 316
a = 158
vậy số cần tìm là 158