CMR:
-9x2 + 3x - 1 < 0 với mọi số thực x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-x^2-1\\ =-\left(x^2-x+1\right)\\ =-\left(x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\right)\\ =-\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\\ \left(x-\dfrac{1}{2}\right)^2\ge0\forall x\in R\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\in R\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\in R\\ \Rightarrow-\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]< 0\forall x\in R\\ \Leftrightarrow x-x^2-1< 0\forall x\in R\)
Vậy \(x-x^2-1< 0\forall x\in R\)
Ta có: \(x-x^2-1\)
\(=-\left(x^2-x+1\right)\)
\(=-\left(x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\right)\)
\(=-\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\)
Vì \(-\left(x-\dfrac{1}{2}\right)^2\le0\forall x\in R\)
\(\Rightarrow-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le\dfrac{-3}{4}< 0\forall x\in R\)
-> ĐPCM.
hơi ngán dạng này :((((
a, \(x^2-3x+5=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+5=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)
b,
\(x^2-\frac{1}{3}x+\frac{5}{4}=x^2-2.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{5}{4}=\left(x-\frac{1}{6}\right)^2+\frac{11}{9}>0\forall x\)
c,
\(x-x^2-3=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}-3=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}< 0\forall x\)d,
\(x-2x^2-\frac{5}{2}=-2\left(x^2-\frac{1}{2}x+\frac{5}{4}\right)=-2\left(x^2-2.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+\frac{5}{4}\right)=-2\left[\left(x-\frac{1}{4}\right)^2+\frac{19}{16}\right]=-2\left(x-\frac{1}{4}\right)^2-\frac{19}{8}< 0\forall x\)P/s : ko chắc lém :)))
Ta có: \(x-x^2-1=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)
Dấu "=" chỉ xảy ra khi:\(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
Vậy giá trị trên < 0 với mọi số thực x
ta có : \(x-x^2-1=-\left(x^2-x+1\right)=-\left(x^2-2.\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right)\)
\(=-\left(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right)=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\)
ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi \(x\) \(\Rightarrow-\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi \(x\)
\(\Leftrightarrow-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le\dfrac{-3}{4}< 0\) với mọi \(x\)
vậy \(x-x^2-1< 0\) với mọi số thực \(x\) (đpcm)
Ta có:\(-x^2+4x-7\)
\(=-\left(x^2-4x+7\right)\)
\(=-\left(x^2-2.x.2+2^2-4+7\right)\)
\(=-\left[\left(x-2\right)^2+3\right]\)
\(=-\left(x-2\right)^2-3\)
Do \(-\left(x-2\right)^2\le0\) với \(\forall x\)
\(\Rightarrow-\left(x-2\right)^2-3\le-3< 0\)
\(\Rightarrow-x^2+4x-7< 0\) (đpcm)
câu b,c đề sai bạn nhé!
-3x^2+9x-12
=-3(x^2-3x+4)
=-3(x^2-3x+9/4+7/4)
=-3(x-3/2)^2-21/4<0
Ta có :
\(2x-2x^2-3\)
\(=-2\left(x^2-x+\dfrac{3}{2}\right)\)
\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{5}{4}\right)\)
\(=-2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\right]\)
Tới đây ta nhận xét :
\(\left(x-\dfrac{1}{2}\right)^2\ge0\left(\forall x\right)\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\ge\dfrac{5}{4}\left(\forall x\right)\)
Do \(-2\) < 0 nên :
\(-2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\right]< 0\)
CMR:\(2x-2x^2-1\)<0 Với mọi số thực x.
GIẢI :
\(2x-2x^2-1\)
\(=-2\left(x^2-x+1\right)\)
\(=-2\left(x-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{2}\)
Nhận xét : \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow-2\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi x
\(\Rightarrow-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{2}< 0\) với mọi x
Vậy \(2x-2x^2-1< 0\) với mọi x
\(=-\left(9x^2+2\cdot3\cdot\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{1}{4}-1=-\left(3x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\)
\(-9x^2+3x-1\)
\(=-9\left(x^2-\dfrac{1}{3}x+\dfrac{1}{9}\right)\)
\(=-9\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}+\dfrac{1}{12}\right)\)
\(=-9\left(x-\dfrac{1}{6}\right)^2-\dfrac{3}{4}< 0\forall x\)