K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2017

Ta có :

\(2x-2x^2-3\)

\(=-2\left(x^2-x+\dfrac{3}{2}\right)\)

\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{5}{4}\right)\)

\(=-2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\right]\)

Tới đây ta nhận xét :

\(\left(x-\dfrac{1}{2}\right)^2\ge0\left(\forall x\right)\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\ge\dfrac{5}{4}\left(\forall x\right)\)

Do \(-2\) < 0 nên :

\(-2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\right]< 0\)

12 tháng 11 2017

CMR:\(2x-2x^2-1\)<0 Với mọi số thực x.

GIẢI :

\(2x-2x^2-1\)

\(=-2\left(x^2-x+1\right)\)

\(=-2\left(x-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{2}\)

Nhận xét : \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow-2\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi x

\(\Rightarrow-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{2}< 0\) với mọi x

Vậy \(2x-2x^2-1< 0\) với mọi x

10 tháng 6 2017

a) -x2 + 6x - 10
= -(x2 - 6x + 10)
= -(x2 - 6x + 9 + 1)
= -[(x - 3)2 + 1]

Ta có: (x - 3)2 + 1 > 0 với mọi x
=> -[(x - 3)2 + 1] < 0 với mọi x

b) -2x2 - 4x - 5
= -(2x2 + 4x + 5)
= -(2x2 + 4x + 2 + 3)
= -[(\(\sqrt{2x^2}\)+\(\sqrt{2}\))2 + 3]
Ta có: (\(\sqrt{2x^2}\)+\(\sqrt{2}\))2 + 3 > 0 với mọi x
=>  -[(\(\sqrt{2x^2}\)+\(\sqrt{2}\))2 + 3] < 0 với mọi x

10 tháng 6 2017

a) \(-x^2+6x-10=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1< 0\forall x\)

b)  \(-2x^2-4x-5=-2\left(x^2+2x+1\right)-3=-\left(x+1\right)^2-3< 0\forall x\)

6 tháng 10 2018

a) Ta có \(2x^2-8x+13=2x^2-8x+8+5\)

\(=2\left(x^2-4x+4\right)+5\)

\(=2\left(x-2\right)^2+5\ge5\forall x\)

6 tháng 10 2018

Giả sử trước khi làm nhé 

\(a)\)\(2x^2-8x+13>0\)

\(\Leftrightarrow\)\(4x^2-16x+26>0\)

\(\Leftrightarrow\)\(\left(4x^2-16+16\right)+10>0\)

\(\Leftrightarrow\)\(\left(2x-4\right)^2+10\ge10>0\) ( luôn đúng ) 

Vậy ... 

\(b)\)\(-2+2x-x^2< 0\)

\(\Leftrightarrow\)\(x^2-2x+2>0\)

\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+1>0\)

\(\Leftrightarrow\)\(\left(x-1\right)^2+1\ge1>0\) ( luôn đúng ) 

Vậy ... 

Chúc bạn học tốt ~ 

17 tháng 10 2016

a) \(x^2-4x+5\)

\(\left(x^2-2.2x+4\right)+1\)

\(\left(x-2\right)^2+1\)

Ta co: \(\left(x-2\right)^2>=0\)

=>\(\left(x-2\right)^2+1>=1>0\)

b) \(x^2-4xy+5y^2\)

=\(\left(x^2-4xy+4y^2\right)+y^2\)

\(\left(x-2y\right)^2+y^2\)

Ta co: \(\left(x-2y\right)^2>=0\)

            \(y^2>=0\)

=> \(\left(x-2y\right)^2+y^2>=0\)

c) \(3-2x-x^2\)

\(-\left(x^2+2x\right)+3\)

\(-\left(x^2+2.1x+1-1\right)+3\)

\(-\left(x+1\right)^2+4\)

Hình như câu này sai đề ...

17 tháng 10 2016

a) \(x^2-4x+5\)

\(=x^2-4x+4+1\)

\(=\left(x-2\right)^2+1>0\)

b) \(x^2-4xy+5y^2\)

\(=x^2-4xy+4y^2+y^2\)

\(=\left(x-2y\right)^2+y^2\)

Dấu = xảy ra khi: \(x=y=0\)

c) \(-3-2x-x^2\)

\(=-2-x^2-2x-1\)

\(=-2-\left(x+1\right)^2=-\left[2+\left(x+1\right)^2\right]< 0\)

18 tháng 10 2017

a)A= x2-4xy+4y2+3 (x;y\(\in R\) )

A=(x2-4xy+4y2)+3

A=(x-2y)2+3

do (x-2y)2\(\ge0\forall x\);y

=>(x-2y)2+3\(\ge3\)

=> A \(\ge3\)

vậy A >0 với mọi x;y\(\in R\)

18 tháng 10 2017

a)

a)

x2 - 4xy + 4y2 + 3

= x2 - 2.x.2y + (2y)2 + 3

= (x - 2y)2 + 3

Vì (x - 2y)2 \(\ge\) 0 với mọi x, y

\(\Rightarrow\) (x - 2y)2 + 3 > 0 với mọi x, y

19 tháng 9 2016

b)

\(-x^2+2x-6=-\left(x^2-2x+6\right)\)

\(=-\left(x^2-2x+1+5\right)=-\left(x+1\right)^2-6\)

vì \(\left(x-1\right)^2\ge0\)với mọi \(x\in R\)

nên \(-\left(x-1\right)^2\le0\)với mọi \(x\in R\)

do đó \(-\left(x-1\right)-5< 0\)với mọi \(x\in R\)

vậy \(-x^2+2x-6< 0\)với mọi \(x\in R\)

19 tháng 9 2016

a) \(x^2+2x+7=x^2+2x+1+6\)

                            \(=\left(x+1\right)^2+6\)

vì \(\left(x+1\right)^2\ge0\)với mọi \(x\in R\)

nên \(\left(x+1\right)^2+6>0\)với mọi \(x\in R\)

vậy \(x^2+2x+7>0\)với mọi \(x\in R\)

31 tháng 10 2017

a)\(x^2-4xy+4y^2+3\)

\(=\left(x-2y\right)^2+3\)

Do \(\left(x-2y\right)^2\ge0\forall x,y\)

\(\left(x-2y\right)^2+3\ge0+3\forall x,y\)

\(\left(x-2y\right)^2+3>0\forall x,y\)

=> Đpcm

b)\(2x-2x^2-1\)

\(=-x^2-x^2+2x-1\)

\(=-x^2-\left(x-1\right)^2\)

\(=-\left[x^2+\left(x-y\right)^2\right]< 0\)

=> đpcm

Làm nảy giờ, mình thấy toàn mấy bài trong phân ôn tập chương I. Đừng đăng tất cả các bạn tập, bạn suy nghĩ khi nào ko được bí quá hả đăng hỏi nha bạn! Nếu có gì ko hiểu hỏi, mình giải thích cho. Bài này mình cũng được thầy giảng rồi.

Chúc bạn học tốt!^^

31 tháng 10 2017

sai đề câu a ko bạn ? 2 dấu trừ đằng sau thì làm sao ra đc HĐT

3 tháng 11 2016

Ta có: \(x-x^2-1=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)

Dấu "=" chỉ xảy ra khi:\(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

Vậy giá trị trên < 0 với mọi số thực x