K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2021

a, Ta có : \(5^2A=5^{52}-5^{50}+...+5^4-5^2\)

\(\Rightarrow25A+A=5^{52}-1\)\(\Rightarrow A=\dfrac{5^{52}-1}{26}\)

b, Không thấy n :vvv

c, Ta có : \(A=24\left(5^{48}+...+1\right)\)

\(=4.6.\left(5^{48}+...+1\right)\)

\(=4.6\left(5^{48}+...\right)+24\)

\(=4.5^2\left(5^{46}.6+...\right)+24=100\left(5^{46}.6+...\right)+24\)

Vậy số dư khi chia A cho 100 là 24 .

18 tháng 2 2021

5 mũ 11 hay mũ n vậy bạn ?

9 tháng 4 2023

       A =            550 - 548 + 546- 544+....+56 - 54 + 52 - 1

\(\times\) 22 = 552 - 550 + 548 - 546+ 544-.....-56 +54 - 52

\(\times\) 4  + A =  552 - 1

5A             = 552 - 1

  A             = ( 552 - 1) : 5

 A              = 551 - \(\dfrac{1}{5}\) 

13 tháng 2 2022

a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012

S = (5 + 5+ 5+ 54) + 55(5 + 5+ 5+ 54)+....+ 52009(5 + 5+ 5+ 54)

Vì (5 + 5+ 5+ 54) = 780 chia hết cho 65

Vậy S chia hết cho 65

b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19. 

(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.

(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19. 

Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất

Suy ra: a + 27 = BCNN (4;11; 19).

Từ đó tìm được: a = 809

A = 10n + 18n - 1 = 10n - 1 - 9n + 27n

24 tháng 1 2021

a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012

S = (5 + 5+ 5+ 54) + 55(5 + 5+ 5+ 54)+....+ 52009(5 + 5+ 5+ 54)

Vì (5 + 5+ 5+ 54) = 780 chia hết cho 65

Vậy S chia hết cho 65

b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19. 

(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.

(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19. 

Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất

Suy ra: a + 27 = BCNN (4;11; 19).

Từ đó tìm được: a = 809

A = 10n + 18n - 1 = 10n - 1 - 9n + 27n

Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó  nên 

       * Vậy A chia hết cho 27

9 tháng 2 2023

a)

\(A=5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\)

\(5^2.A=5^2.\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)\)

\(25A=5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\)

\(A+25A=\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)+\left(5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\right)\)

\(26A=5^{22}-1\)

\(A=\dfrac{5^{22}-1}{26}\).

b)

\(26A+1=5^n\)

\(\Leftrightarrow\left(5^{52}-1\right)+1=5^n\)

\(\Leftrightarrow5^{52}=5^n\)

\(\Rightarrow n=52\).

c)

\(A=\left(5^{50}-5^{48}\right)+\left(5^{46}-5^{44}\right)+...+\left(5^6-5^4\right)+\left(5^2-1\right)\)

\(=5^{48}.\left(5^2-1\right)+5^{44}.\left(5^2-1\right)+...+5^4.\left(5^2-1\right)+1.\left(5^2-1\right)\)

\(=5^2.24.\left(5^{46}+5^{42}+...+5^2\right)+24\)

\(=25.4.6.\left(5^{46}+5^{42}+...+5^2\right)+24\)

\(=100.6.\left(5^{46}+5^{42}+...+5^2\right)+24⋮100\)

\(\Rightarrow A⋮100\).

 

18 tháng 9 2016

Mọi người ơi mình làm thế này có đúng ko ạ ?

1, Nhận xét: 45 : 15 = 3 
do đó khi A chia cho 15 thì thương sẽ tăng lên 3 lần 
mà số dư 17 > 15 nên 17 : 15 = 1 dư 2 
Vậy A chia 15 thì được thương là một số gấp 3 lần thương ban đầu và cộng thêm 1 và số dư là 2. 

2, Vì số đó chia cho 26 và 24 đều dư 5 nên nếu bớt đi 5 đơn vị thì số đó chia hết cho cả 24 và 26. 
Số chia hết cho 24 và 26 là 312, 624, 936.... 
Số cần tìm là 317, 629, 941... 
Nhận thấy 941 : 24 = 39 dư 5 và 941 : 26 = 36 dư 5 
mà 39 - 36 = 3 
Vậy Số cần phải tìm là 941 

3, Gọi số cần tìm có dạng 8ab (gạch ngang trên đầu) 
Giả sử thêm vào số cần tìm 2 đơn vị thì số đó chia hết cho 3 và cho 5, đồng thời chia cho 3 dư 1 do đó số đó có tận cùng là 5 => chữ số b ban đầu là 3. 
Vì số đó chia cho 3 nên tổng các chữ số 8 + a + 3 = 11 + a chia cho 3 dư 1 
nên a = 2, 5, 8 (vì 13 : 3 = 4 dư 1, 16 : 3 = 5 dư 1 và 19 : 3 = 6 dư 1) 
Vậy số cần phải tìm là 823, 853, 883.

23 tháng 10 2017

đúng rồi

18 tháng 2 2021

Ta có A = 550 - 548 + 546 - 544 + .... + 52 - 1

=> 52A = 25A = 552 - 550 + 548  - 546 + .... + 53 - 52

=> 25A + A = (552 - 550 + 548  - 546 + .... + 53 - 52) + (550 - 548 + 546 - 544 + .... + 52 - 1)

=> 26A = 552 - 1

=> A =  \(\frac{5^{52}-1}{26}\)

b) Sửa đề : Tìm n sao cho 26A + 1 = 511 + n

Khi đó 26A + 1 = 511 + n

<=> 552 - 1 + 1 = 511 + n

<=> 552 = 511 + n

<=> 11 + n = 52

<=> n = 41

c) Ta có A - 24 = 550 - 548 + 546 - 544 + .... + 56 - 54

= 548(52 - 1) + 544(52 - 1) + .... + 54(52 - 1)

= (52 - 1)(548 + 544 + ... + 54)

= 24.(548 + 544 + ... + 54)

= 24.52(546 + 542 + ... + 1)

= 24.25.(546 + 542 + ... + 1)

= 600.(546 + 542 + ... + 1) = 6.100.(546 + 542 + ... + 1) \(⋮100\)

Vì A - 24 \(⋮\)100

=> A chia 100 dư 24