Cho tg ABC có ^B=^C=40o Kẻ phân giác BD,từ D kẻ DE, DF lần lượt vuông góc với AB,AC.
a) CM: BD là đường trung trực của EF
b) Trên BC lấy N sao cho BD=BN
CM: Tg NDC cân
c)CM: BD+DA=BC
cần sớm nha mọi người
o l m . v n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
b: ta có: ΔBAD=ΔBHD
=>BA=BH và DA=DH
Ta có: BA=BH
=>B nằm trên đường trung trực của AH(1)
Ta có: DA=DH
=>D nằm trên đường trung trực của AH(2)
Từ (1),(2) suy ra BD là đường trung trực của AH
Ta có: DA=DH
DH<DC
Do đó: DA<DC
c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
AK=HC
Do đó: ΔDAK=ΔDHC
=>\(\widehat{ADK}=\widehat{HDC}\)
mà \(\widehat{HDC}+\widehat{ADH}=180^0\)(hai góc kề bù)
nên \(\widehat{ADK}+\widehat{ADH}=180^0\)
=>K,D,H thẳng hàng
Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH và AK=HC
nên BK=BC
=>B nằm trên đường trung trực của KC(3)
Ta có: ΔDAK=ΔDHC
=>DK=DC
=>D nằm trên đường trung trực của CK(4)
Từ (3),(4) suy ra BD là đường trung trực của CK
=>BD\(\perp\)CK
a)Vì tam giác abc cân ở a =>góc abc=góc acb.mà góc acb =góc ecn (đối đỉnh) =>góc abc=góc ecn.
Xét tam giác bmd và tam giác cne có :bd=ce; góc abc=góc ecn =>tam giác bmd =tam giác ecn(cạnh góc vuông và góc nhọn kề)
=>md=ne.
b)Vì dm và en cung vuông góc với bc =>dm song song với en=>góc dmc=góc enc(so le trong)
xét tam giác dim và tam giác ein có :góc dmc =góc enc;góc mid=góc nie(đối đỉnh);góc mdi=góc nei=90 độ=>tam giác dim=tam giác ein(g.g.g.)
=>di=ie=>i là trung điểm de
c)gọi h là giao của ao với bc.
ta có:xét tam giác abo bằng tam giác aco=>bo=co=>o thuộc trung trực của bc .tương tự a thuộc trung trực của bc=>ao là trung trực bc
a: \(AC=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)
b: ΔDEC vuông tại E
=>DE<DC
c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
d: Xét ΔDBC có góc DBC=góc DCB
nên ΔDBC cân tại D
e: gọi giao của CF và AB là H
Xét ΔBHC có
BF,CA là đường cao
BF cắt CA tại D
=>D là trực tâm
=>HD vuông góc BC tại E
=>H,D,E thẳng hàng
=>BA,DE,CF là trực tâm
a: Xét ΔBDM vuông tại D và ΔCEM vuông tại E có
MB=MC
góc BMD=góc CME
=>ΔBDM=ΔCEM
=>BD=CE
b: Xét ΔKBC có
KM vừa là đường cao, vừa là trung tuyến
=>ΔKBC cân tại K
c: KB=KC
mà KC<AC
nên KB<AC
a, xét tam giác MDB và tam giác NEC có:
BD=CE(gt)
vì \(\widehat{B}\)=\(\widehat{ACB}\)mà\(\widehat{ACB}\)=\(\widehat{ECN}\)nên\(\widehat{B}\)=\(\widehat{ECN}\)
\(\Rightarrow\)tam giác MDB=tam giác NEC(CH-GN)
\(\Rightarrow\)MD=NE
a: Xet ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: ΔBAD=ΔBED
=>góc BAD=góc BED=90 độ
=>DE vuông góc BC
AD=DE
DE<DC
=>AD<DC
d: góc HAE+góc BEA=90 độ
góc CAE+góc BAE=90 độ
=>góc HAE=góc CAE
=>AE là phân giác của góc HAC
Câu 1: Tự vẽ hình.
a) Xét tg ABD vuông tại A; tg EBD vuông tại E:
BD chung
g ABD = g EBD (tia pg)
=> tg ABD = tg EBD (ch-gn)
=> AB = EB
=> tg ABE cân tại B
mà BD là tia pg của g ABE
=> BD là đg cao kẻ từ B trog tg ABE
=> BD ⊥⊥ AE
b) Vì tg ABD = tg EBD
=> AD = ED
Xét tg ADF vuông tại A; tg EDC vuông tại E:
AD = ED (cm trên)
g ADF = g EDC (đối đỉnh)
=> tg ADF = tg EDC (cgv-gn)
=> DF = DC
=> tg DCF cân tại D.
trả lời :
vrậy uu
tg DCF cân tại D
^HT^