K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Tự vẽ hình.

a) Xét tg ABD vuông tại A; tg EBD vuông tại E:

BD chung

g ABD = g EBD (tia pg)

=> tg ABD = tg EBD (ch-gn)

=> AB = EB

=> tg ABE cân tại B

mà BD là tia pg của g ABE

=> BD là đg cao kẻ từ B trog tg ABE

=> BD ⊥⊥ AE

b) Vì tg ABD = tg EBD

=> AD = ED

Xét tg ADF vuông tại A; tg EDC vuông tại E:

AD = ED (cm trên)

g ADF = g EDC (đối đỉnh)

=> tg ADF = tg EDC (cgv-gn)

=> DF = DC

=> tg DCF cân tại D.

2 tháng 10 2021

trả lời :

vrậy uu

tg DCF cân tại D

^HT^

a: Đề sai rồi bạn

2 tháng 10 2021

thank

 

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

b: ta có: ΔBAD=ΔBHD

=>BA=BH và DA=DH

Ta có: BA=BH

=>B nằm trên đường trung trực của AH(1)

Ta có: DA=DH

=>D nằm trên đường trung trực của AH(2)

Từ (1),(2) suy ra BD là đường trung trực của AH

Ta có: DA=DH

DH<DC

Do đó: DA<DC

c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

AK=HC

Do đó: ΔDAK=ΔDHC

=>\(\widehat{ADK}=\widehat{HDC}\)

mà \(\widehat{HDC}+\widehat{ADH}=180^0\)(hai góc kề bù)

nên \(\widehat{ADK}+\widehat{ADH}=180^0\)

=>K,D,H thẳng hàng

Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH và AK=HC

nên BK=BC

=>B nằm trên đường trung trực của KC(3)

Ta có: ΔDAK=ΔDHC

=>DK=DC

=>D nằm trên đường trung trực của CK(4)

Từ (3),(4) suy ra BD là đường trung trực của CK

=>BD\(\perp\)CK

28 tháng 1 2016

a)Vì tam giác abc cân ở a =>góc abc=góc acb.mà góc acb =góc ecn (đối đỉnh) =>góc abc=góc ecn.

Xét tam giác bmd và tam giác cne có :bd=ce; góc abc=góc ecn =>tam giác bmd =tam giác ecn(cạnh góc vuông và góc nhọn kề)

=>md=ne.

b)Vì dm và en cung vuông góc với bc =>dm song song với en=>góc dmc=góc enc(so le trong)

xét tam giác dim và tam giác ein có :góc dmc =góc enc;góc mid=góc nie(đối đỉnh);góc mdi=góc nei=90 độ=>tam giác dim=tam giác ein(g.g.g.)

=>di=ie=>i là trung điểm de

c)gọi h là giao của ao với bc.

ta có:xét tam giác abo bằng tam giác aco=>bo=co=>o thuộc trung trực của bc .tương tự a thuộc trung trực của bc=>ao là trung trực bc

a: \(AC=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)

b: ΔDEC vuông tại E 

=>DE<DC

c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

d: Xét ΔDBC có góc DBC=góc DCB

nên ΔDBC cân tại D

e: gọi giao của CF và AB là H

Xét ΔBHC có

BF,CA là đường cao

BF cắt CA tại D

=>D là trực tâm

=>HD vuông góc BC tại E

=>H,D,E thẳng hàng

=>BA,DE,CF là trực tâm

a: Xét ΔBDM vuông tại D và ΔCEM vuông tại E có

MB=MC

góc BMD=góc CME

=>ΔBDM=ΔCEM

=>BD=CE

b: Xét ΔKBC có

KM vừa là đường cao, vừa là trung tuyến

=>ΔKBC cân tại K

c: KB=KC

mà KC<AC

nên KB<AC

2 tháng 3 2019

a, xét tam giác MDB và tam giác NEC có:

                     BD=CE(gt)

 vì \(\widehat{B}\)=\(\widehat{ACB}\)\(\widehat{ACB}\)=\(\widehat{ECN}\)nên\(\widehat{B}\)=\(\widehat{ECN}\)

        \(\Rightarrow\)tam giác MDB=tam giác NEC(CH-GN)

          \(\Rightarrow\)MD=NE

a: Xet ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

b: BA=BE

DA=DE

=>BD là trung trực của AE
c: ΔBAD=ΔBED

=>góc BAD=góc BED=90 độ

=>DE vuông góc BC

AD=DE

DE<DC

=>AD<DC

d: góc HAE+góc BEA=90 độ

góc CAE+góc BAE=90 độ

=>góc HAE=góc CAE

=>AE là phân giác của góc HAC