K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2019

a) C/M ΔAMB=ΔAMC

Ta có ∠BAM=∠MAC (gt)

AB=AC (gt)

∠ABM=∠ACM (ΔABC cân)

Vậy ΔAMB=ΔAMC (g-c-g)

b) C/M M trung điểm BC

Vì ΔABC cân tại A (do AB=AC:gt)

Có AM là đường cao

Nên AM cũng là trung tuyến

Vậy M trung điểm BC

b: Ta có: ΔBAC cân tại A

mà AM là đường phân giác

nên M là trung điểm của BC

5 tháng 6 2016

Tam giác ABC có AB = AC (gt) => tam giác ABC cân tại A

=> tia phân giác góc A là AM vuông góc với cạnh BC (trong 1 tam giác cân, tia phân giác góc ở đỉnh cũng là đường vuông góc với cạnh đáy của tam giác đó) (khúc này nếu thầy bạn không có dạy thì nhắn tin cho mình để mình chứng minh vuông góc bằng hai tam giác bằng nhau)

Ta có: IH vuông góc BC (gt) (1)

          AM vuông góc BC (cmt) (2)

=> Từ (1)(2) suy ra: IH // AM (cùng vuông góc với BC)

=> góc BIH = góc BAM (đồng vị)

Mà góc BAM = 2 lần góc BAC (do tia AM là tia phân giác)

=> góc BIH = 2 lần góc BAC

Vậy góc BIH = 2 lần góc BAC

16 tháng 12 2015

it so hard 

it very hard to me

19 tháng 1 2022

a. Xét tam giác ABC có: AB = AC (gt).

\(\Rightarrow\) Tam giác ABC cân tại A.

Mà AH là phân giác \(\widehat{A}\) (gt).

\(\Rightarrow\) AH là đường cao; AH là đường trung tuyến (Tính chất các đường trong tam giác cân).

\(\Rightarrow\) AH \(\perp\) BC; H là trung điểm của BC. 

Xét tam giác EBH và tam giác ECH:

BH = CH (H là trung điểm của BC).

EH chung.

\(\widehat{EHB}=\widehat{EHC}\) \(\left(=90^o\right).\)

\(\Rightarrow\) Tam giác EBH = Tam giác ECH (c - g - c).

\(\Rightarrow\) BE = CE (2 cạnh tương ứng).

b) Xét tam giác ABC cân tại A:  AH là phân giác \(\widehat{A}\) (gt).

\(\Rightarrow\) AH là đường trung trực của BC (Tính chất các đường trong tam giác cân).