Chứng tỏ rằng hiệu 3338-910chia hết cho 2 và 5
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
PT
1
18 tháng 10 2015
Đặt số dư là a
Ta có: 5k + a - 5g - a = 5(k-g) chia hết cho 5
NK
1
10 tháng 9 2016
Gọi 2 số đó là a và b
Do a và b có cùng số dư khi chia cho 5
=> a = 5.m + r; b = 5.n + r (r là số dư; r < m; r < n)
Ta có: a - b = (5.m + r) - (5.n + r)
= 5.m + r - 5.n - r
= 5.m - 5.n
= 5.(m - n) chia hết cho 5
Chứng tỏ 2 số chia cho 5 có cùng số dư thì hiệu của chúng chia hết cho 5
30 tháng 6 2015
vì 5 số tự nhiên này ko chia hết cho 5 nên có thể có các số dư là 1;2;3;4
Mà số các số tự nhiên lớn hơn số các số dư nên có ít nhất 2 số có cùng số dư
=> hiệu 2 số này chia hết cho 5
* Ta có \(333\equiv1\left(mod2\right)\Rightarrow333^8\equiv1\left(mod2\right)\); \(9\equiv1\left(mod2\right)\Rightarrow9^{10}\equiv\left(mod2\right)\)
\(\Rightarrow333^8-9^{10}⋮2\)
* Ta có \(333\equiv3\left(mod5\right)\Rightarrow333^8\equiv6561\equiv1\left(mod5\right)\);\(9\equiv-1\left(mod5\right)\Rightarrow9^{10}\equiv1\left(mod5\right)\)
\(\Rightarrow333^8-9^{10}⋮5\)
bạn ơi mod là gì zậy