so sánh
A=\(\dfrac{10^{1990}+1}{10^{1991}+1}\)
B=\(\dfrac{10^{1991}+1}{10^{1992}+1}\)
nhanh nha mik đang cần gấp (giải thích rõ nha)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đáng ra là toán lớp 6 đó nhưng mik thích đặt toán lớp 5 :)
A = \(\dfrac{10^{1990}+1}{10^{1991}+1}\) ⇒ 10A = \(\dfrac{10^{1991}+10}{10^{1991}+1}\) = \(1+\dfrac{9}{10^{1991}+1}\)
B = \(\dfrac{10^{1991}+10}{10^{1992}+1}\) ⇒ 10B = \(\dfrac{10^{1992}+10}{10^{1992}+1}\) = 1 + \(\dfrac{9}{10^{1992}+1}\)
Vì \(\dfrac{9}{10^{1991}+1}\) > \(\dfrac{9}{10^{1992}+1}\)
10A > 10B => A > B
Giải:
Ta gọi \(\dfrac{10^{1990}+1}{10^{1991}+1}\) =A và \(\dfrac{10^{1991}}{10^{1992}}\) =B
Ta có:
A=\(\dfrac{10^{1990}+1}{10^{1991}+1}\)
10A=\(\dfrac{10^{1991}+10}{10^{1991}+1}\)
10A=\(\dfrac{10^{1991}+1+9}{10^{1991}+1}\)
10A=\(1+\dfrac{9}{10^{1991}+1}\)
Tương tự:
B=\(\dfrac{10^{1991}}{10^{1992}}\)
10B=\(\dfrac{10^{1992}}{10^{1992}}=1\)
Vì \(\dfrac{9}{10^{1991}+1}< 1\) nên 10A<10B
⇒ \(\dfrac{10^{1990}+1}{10^{1991}+1}\) < \(\dfrac{10^{1991}}{10^{1992}}\)
Giải:
a) \(A=\dfrac{10^{1990}+1}{10^{1991}+1}\) và \(B=\dfrac{10^{1991}+1}{10^{1992}+1}\)
Ta có:
\(A=\dfrac{10^{1990}+1}{10^{1991}+1}\)
\(10A=\dfrac{10^{1991}+10}{10^{1991}+1}\)
\(10A=\dfrac{10^{1991}+1+9}{10^{1991}+1}\)
\(10A=1+\dfrac{9}{10^{1991}+1}\)
Tương tự :
\(B=\dfrac{10^{1991}+1}{10^{1992}+1}\)
\(10B=\dfrac{10^{1992}+10}{10^{1992}+1}\)
\(10B=\dfrac{10^{1992}+1+9}{10^{1992}+1}\)
\(10B=1+\dfrac{9}{10^{1992}+1}\)
Vì \(\dfrac{9}{10^{1991}+1}>\dfrac{9}{10^{1992}+1}\) nên \(10A>10B\)
\(\Rightarrow A>B\left(đpcm\right)\)
Chúc bạn học tốt!
Ta có :
\(10A=\dfrac{10^{1991}+10}{10^{1991}+1}=\dfrac{10^{1991}+1+9}{10^{1991}+1}=1+\dfrac{9}{10^{1991}+1}\)\(\left(1\right)\)
\(10B=\dfrac{10^{1992}+10}{10^{1992}+1}=\dfrac{10^{1992}+1+9}{10^{1992}+1}=1+\dfrac{9}{10^{1992}+1}\)\(\left(2\right)\)
Vì \(1+\dfrac{9}{10^{1991}+1}>1+\dfrac{9}{10^{1992}+1}\)\(\left(3\right)\)
Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
~ Chúc bn học tốt ~
Ta có:
A=101990+1101991+1=101990.10101991.10=101990101991=1/10A=101990+1101991+1=101990.10101991.10=101990101991=1/10 (%)
B=101991+1101992+1=101991.10101992.10=101991101992=1/10B=101991+1101992+1=101991.10101992.10=101991101992=1/10 (%) (%)
Bắt đầu vs phân số có mẫu lớn hơn trước
Ta có: B=\(\frac{10^{1991}+1}{10^{1992}+1}\)<1
Có 1 công thức là \(\frac{a}{b}< 1\) => \(\frac{a}{b}< \frac{a+m}{b+m}\) nên
B<\(\frac{10^{1991}+1+9}{10^{1992}+1+9}\)(theo mình học thì phải cộng sao cho số đứng sau thành 1 số là số có mũ đằng trc)
B<\(\frac{10^{1991}+10}{10^{1992}+10}\)
B<\(\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\) (lúc này nhớ đến tính chất phân phối của phép nhân)
Mà \(\frac{10^{1990}+1}{10^{1991}+1}\)(vế trong ngoặc)=A
=>A>B
Mình làm cách 2 cho nhanh nhé !!
Ta có : \(\dfrac{10^{1991}+1}{10^{1992}+1}\)
\(\Rightarrow B=\dfrac{10^{1991}+1}{10^{1992}+1}< \dfrac{10^{1991}+1+9}{10^{1992}+1+9}\)
= \(\dfrac{10^{1991}+1}{10^{1992}+1}\)
=\(\dfrac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)
= \(\dfrac{10^{1990}+1}{10^{1991}+1}=A\)
Vậy B<A.
Ta có :
\(10A=\dfrac{10\left(10^{1990}+1\right)}{10^{1991}+1}=\dfrac{10^{1991}+10}{10^{1991}+1}=\dfrac{10^{1991}+1+9}{10^{1991}+1}=1+\dfrac{9}{10^{1991}+1}\left(1\right)\)
\(10B=\dfrac{10\left(10^{1991}+1\right)}{10^{1992}+1}=\dfrac{10^{1992}+10}{10^{1992}+1}=\dfrac{10^{1992}+1+9}{10^{1992}+1}=1+\dfrac{9}{10^{1992}+1}\left(2\right)\)
Lại có : \(1+\dfrac{9}{10^{1991}+1}>1+\dfrac{9}{10^{1992}+1}\)
\(\Leftrightarrow10A>10B\Leftrightarrow A>B\)
Vậy...