K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2019

A B C D E F I

Gọi I là giao điểm của BD và EF

EI//AB => \(\frac{DE}{AD}=\frac{ID}{DB}\)

IF//DC => \(\frac{BI}{BD}=\frac{BF}{BC}\)

=> \(\frac{DE}{AD}+\frac{BF}{BC}=\frac{ID}{DB}+\frac{BI}{BD}=\frac{BI+ID}{BD}=\frac{BD}{BD}=1\)

19 tháng 4 2020

D C E I F A B

Gọi I là giao điểm của DB và EF

Xét tam giác ADB 

Có : EI // AB

\(\Rightarrow\frac{DE}{AD}=\frac{ID}{DB}\)( 1 )

Xét tam giác DBC 

Có : IF // DC

\(\Rightarrow\frac{BI}{BD}=\frac{BF}{BC}\)( 2 )

Từ (1)(2) , suy ra

\(\frac{DE}{AD}+\frac{BF}{BC}=\frac{ID}{DB}+\frac{BI}{BD}=\frac{BI+ID}{BD}=\frac{BD}{BD}=1\)

Vậy : \(\frac{ED}{AD}+\frac{BF}{BC}=1\)

Em làm kiểu này không biết có đúng không cô Chi check lại giúp em ạ <3

Xét hình thang ABCD có EF//AB//CD

nên \(\dfrac{AE}{ED}=\dfrac{BF}{FC}\)

=>\(\dfrac{ED}{AE}=\dfrac{CF}{FB}\)

=>\(\dfrac{ED+EA}{AE}=\dfrac{CF+FB}{FB}\)

=>\(\dfrac{AD}{AE}=\dfrac{BC}{FB}\)

=>\(\dfrac{AE}{AD}=\dfrac{BF}{BC}\)

=>\(\dfrac{BF}{BC}=1-\dfrac{ED}{AD}\)

=>\(\dfrac{BF}{BC}+\dfrac{ED}{AD}=1\)

16 tháng 2 2021

 Gọi O là giao điểm của AC và EF

Xét tam giác ADC có EO //DC

=>AE/AD=AO/AC.  (1)

Xét tg ABC có OF//DC

=>CF/CB=CO/CA.  (2)

Từ 1 và 2=>AE/AD+CF/CB=AO/AC+CO/CA=AO+CO/AC=AC/AC=1(đpcm)

3 tháng 3 2020

Kẻ đoạn thẳng AC nối hai điểm A và C. Gọi O là giao điểm của đoạn thẳng AC và đoạn thẳng EF. Theo đề bài, do EF//AB và EF//CD nên áp dụng định lý Talet trong tam giác, ta có:

Xét tam giác ABC:\(\frac{FC}{FB}=\frac{OC}{OA}\)(1)

Xét tam giác ACD:\(\frac{OC}{OA}=\frac{ED}{AD}\)(2)

Từ (1) và (2), suy ra \(\frac{ED}{AD}=\frac{FC}{BC}\)(đpcm)

3 tháng 3 2020

A B C D E F O

Gọi giao điểm của AC và EF là O

Xét tam giác ABC có:OF//AB ( EF//AB)

\(\Rightarrow\frac{FC}{BC}=\frac{OC}{AC}\)( định lý Ta-let ) (1)

Xét tam giác ADC có OE//DC ( EF//DC)

\(\Rightarrow\frac{ED}{AD}=\frac{OC}{AC}\)( định lý Ta-let ) (2)

Từ (1) và (2) \(\Rightarrow\frac{FC}{BC}=\frac{ED}{AD}\left(đpcm\right)\)

Xét hình thang ABCD có

EF//AB//CD

nên AE/ED=BF/FC

22 tháng 4 2017

Giải:

a) Nối AC cắt EF tại O

∆ADC có EO // DC => AEED = AOOC (1)

∆ABC có OF // AB => AOOC = BFFC (2)

Từ 1 và 2 => AEED = BFFC

b) Từ AEED = BFFC => AEED+AE= BFFC+BF

hay AEAD=BFBC

c) Từ AEED = BFFC => AE+EDED= BF+FCFC

=>