1/100.(100/1.101+2.202+...+100/25.125)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là thương A:B cần tìm.Theo đề, ta có:
\(\left(\dfrac{1}{1.26}+\dfrac{1}{2.27}+...+\dfrac{1}{100.125}\right)x=\dfrac{1}{1.101}+\dfrac{1}{2.102}+...+\dfrac{1}{25.125}\)
Nhân 2 vế cho 100, ta có:
\(4\left(\dfrac{25}{1.26}+\dfrac{25}{2.27}+...+\dfrac{25}{100.125}\right)x=\dfrac{100}{1.101}+\dfrac{100}{2.102}+...+\dfrac{100}{25.125}\)
\(\Rightarrow4\left(1-\dfrac{1}{26}+\dfrac{1}{2}-\dfrac{1}{27}+...+\dfrac{1}{100}-\dfrac{1}{125}\right)x=1-\dfrac{1}{101}+\dfrac{1}{2}-\dfrac{1}{102}+...+\dfrac{1}{25}-\dfrac{1}{125}\)
\(\Rightarrow4\left[\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-\left(\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{125}\right)\right]x=\left(1+\dfrac{1}{2}+...+\dfrac{1}{25}\right)-\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{125}\right)\)\(\Rightarrow4x=1\Rightarrow x=\dfrac{1}{4}\)
Vậy hiệu A:B là:\(\dfrac{1}{4}\)
Ta có:
\(M=\dfrac{100^{100}+1}{100^{99}+1}\)
\(\Rightarrow\dfrac{M}{100}=\dfrac{100^{100}+1}{100\cdot\left(100^{99}+1\right)}\)
\(\Rightarrow\dfrac{M}{100}=\dfrac{100^{100}+1}{100^{100}+100}\)
\(\Rightarrow\dfrac{M}{100}=1-\dfrac{99}{100^{100}+100}\)
\(N=\dfrac{100^{101}+1}{100^{100}+1}\)
\(\Rightarrow\dfrac{N}{100}=\dfrac{100^{101}+1}{100\cdot\left(100^{100}+1\right)}\)
\(\Rightarrow\dfrac{N}{100}=\dfrac{100^{101}+1}{100^{101}+100}\)
\(\Rightarrow\dfrac{N}{100}=1-\dfrac{99}{100^{101}+100}\)
Mà: \(100^{101}>100^{100}\)
\(\Rightarrow100^{101}+100>100^{100}+100\)
\(\Rightarrow\dfrac{99}{100^{101}+100}< \dfrac{99}{100^{100}+100}\)
\(\Rightarrow1-\dfrac{99}{101^{101}+100}< 1-\dfrac{99}{100^{100}+100}\)
\(\Rightarrow\dfrac{N}{100}< \dfrac{M}{100}\)
\(\Rightarrow N< M\)
A=100^101+1/100^100+1
B=100^100+1/100^99+1
A<100^101+1+99/100^100+1+99
A<100^101+100/100^100+100
A<100.(100^100+1)/100.(100^99+1)
A<100^100+1/100^99+1=B
=> A<B
Vậy A<B