Bài này ngắn gọn nè
Cho tam giác ABC với góc BAC=60 độ. Chứng minh rằng BC^2=AB^2+AC^2-AC*AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
Kẻ BH ⊥ AC tại H.Xét tam giác ABH có góc BHA = 90độ (cách kẻ)=> góc ABH + góc BAH = 90độ (phụ nhau) => góc ABH = 90độ - góc BAH = 90độ - 60độ = 30độ => góc ABH = 30độXét tam giác ABH có góc BHA = 90độ và góc ABH = 30độ=> Theo bổ đề trên ta có: AH = AB/2 => 2AH = AB (1)Áp dụng định lý Py-ta-go ta có:AB² = BH² + AH²=> BH² = AB² - AH² (2)Xét tam giác BHC có góc BHC = 90độ (cách kẻ)=> Áp dụng định lý Py-ta-go ta có:BC² = BH² + HC² = BH² + (AC - AH)² = BH² + AC² - 2AH.AC + AH² (3)Thay (1) và (2) vào (3) ta có:BC² = (AB² - AH²) + AC² - AB.AC + AH²<=> BC² = AB² - AH² + AC² - AB.AC + AH<=> BC² = AB² + AC² - AB.AC (đpcm)
a) Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))
Do đó: ΔABD=ΔAED(cạnh huyền-góc nhọn)
b) Ta có: AD là tia phân giác của \(\widehat{BAC}\)(gt)
nên \(\widehat{DAC}=\dfrac{\widehat{BAC}}{2}=\dfrac{60^0}{2}=30^0\)(1)
Ta có: ΔABC vuông tại B(gt)
nên \(\widehat{C}+\widehat{A}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{DCA}+60^0=90^0\)
hay \(\widehat{DCA}=30^0\)(2)
Từ (1) và (2) suy ra \(\widehat{DAC}=\widehat{DCA}\)
Xét ΔDCA có \(\widehat{DAC}=\widehat{DCA}\)(cmt)
nên ΔDCA cân tại D(Định lí đảo của tam giác cân)
Suy ra: DA=DC(hai cạnh bên)
Xét ΔAED vuông tại E và ΔCED vuông tại E có
DA=DC(cmt)
DE chung
Do đó: ΔAED=ΔCED(cạnh huyền-cạnh góc vuông)
Suy ra: EA=EC(hai cạnh tương ứng)
Để chứng minh rằng SABC = AB.AC.căn 3/4 và BC^2 = AB^2 + AC^2 - AB.AC, ta có thể sử dụng các định lý trong hình học tam giác nhọn.
Để chứng minh rằng EF = BC/2 và SBCEF = 3SAEF, ta cũng có thể sử dụng các định lý trong hình học tam giác nhọn.
Để chứng minh rằng IM = 2IN và MFI = 30°, ta có thể sử dụng các định lý về tia phân giác và góc trong tam giác.
Tuy nhiên, để có thể chứng minh chính xác các phần trên, cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.
Để chứng minh rằng SABC = AB.AC.căn 3/4 và BC^2 = AB^2 + AC^2 - AB.AC, ta có thể sử dụng các định lý trong hình học tam giác nhọn.
Để chứng minh rằng EF = BC/2 và SBCEF = 3SAEF, ta cũng có thể sử dụng các định lý trong hình học tam giác nhọn.
Để chứng minh rằng IM = 2IN và MFI = 30°, ta có thể sử dụng các định lý về tia phân giác và góc trong tam giác.
Tuy nhiên, để có thể chứng minh chính xác các phần trên, cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.
Vì \(BAC=60^o\Rightarrow ABH=30^o\Rightarrow AH=\dfrac{AB}{2}\left(1\right)\)
Áp dụng định lý Pytago ta có:
\(AB^2=AH^2+BH^2\) và \(BC^2=BH^2+HC^2\)
\(\Rightarrow BC^2=AB^2-AH^2+AC^2-2.AC.AH+AH^2\)
\(\Rightarrow BC^2=AB^2+AC^2-2AH.AC\left(2\right)\)
Từ (1) và (2) \(\Rightarrowđfcm\)
chờ em tí nhá
bài nào càng ít dữ liệu thì càng khó Hiếu à
chị chịu luôn làm một tý thấy hơi khố thôi ko làm nữa