K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 1

Giả sử gốc là điểm A, điểm gãy là B và điểm ngọn chạm đất là C, ta có tam giác ABC vuông tại A

Trong đó \(AC=3m\) ; \(AB+BC=9\left(m\right)\) 

Áp dụng định lý Pitago:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow AB^2+3^2=\left(9-AB\right)^2\)

\(\Leftrightarrow9=81-18AB\)

\(\Rightarrow AB=4\left(m\right)\)

Vậy điểm gãy cách gốc 4m

18 tháng 2 2021

gọi k/c từ điểm gãy đến ngọn cây là x  .                                                                                      Vì cây cau vuông góc với mặt đất nên cây cau gãy tạo với mặt đất hình tam giác vuông =>khoảng cách từ gốc đến điểm gãy và k/c từ ngọn cây đến góc là cạnh góc vuông  và x là cạnh huyền                                                                                                                   Định Lí PTG ta có : 3^2+4^2=x^2 =>x=5                                                            => chiều cao cây = 5+4=9m                                 

18 tháng 2 2021

mình nghĩ vậy

15 tháng 12 2019

Đáp án C

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

27 tháng 5 2019

Đáp án C

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

7 tháng 3 2021

Gọi chiều dài phần trên gãy ngang là c

Áp dụng định lí Py-ta-go ta được: 52 + 122 = c2

=> c2 = 169 => c = 13m

Cây cột điện dài : 13 + 5 = 18m

7 tháng 3 2021

Chiều cao của phần bị gãy là:

   √(5^2 + 12^2) = 13  (m)

Chiều cao của cây cột điện là:    

    13 + 5 = 18 (m)

Vậy cây cột điện cao 18m

Điểm gãy cách gốc:

\(\sqrt{8^2-4^2}=4\sqrt{3}\left(m\right)\)

20 tháng 2 2022

Tham khảo:

Gọi chiều dài phần còn lại là x (m)

Chiều dài phần gãy là 8−x (m)

Áp dụng định lí Pi-ta-go, ta có:

x2+42=(8−x)2

⇒x2+16=64−16x+x2

⇒x2−x2+16x=64−16

⇒16x=48

⇒x=3

Vậy điểm gãy cách gốc 3m

AH
Akai Haruma
Giáo viên
9 tháng 12 2023