Cho tứ giác ABCD có phân giác trong của góc A và góc B cắt nhau tại E, phân giác ngoài của góc A và góc B cắt nhau tại F. Chứng mih AEB=(C+D)/2 và AFB=(A+B)/2
T.T
Giải chi tiết jum vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Góc BIC = 180o - (góc IBC + ICB) (1)
+) Ta có có IBC = góc ABC/2 (vì BI là p.g của góc ABC); góc ICB = ACB/2 (vì CI là p/g của góc ACB)
=> góc IBC + ICB = góc (ABC + ACB)/2 = (180o - góc BAC)/2
(1) => góc BIC = 90o + (góc BAC/2)
b) góc BKC = 180o - (góc B2 + C2)
+) góc B2 = B1 = góc ABx/ 2= (180o - ABC)/2
+) góc C2 = góc C1 = góc ACy/2 = (180o - ACB)/2
=> góc B2 + C2 = (360o - ABC - ACB)/2 = (360o - 180o + BAC)/2 = (180o + BAC)/2
(2) => góc BKC = 90o - (BAC/2)