Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CHO N là số nguyên Dw
CMR:
n(n+1)(n+2) ko là số chính phương
n là số nguyên dương,\
G/s: n(n+1)(n+2) là số chính phương (1)
Ta luôn có: (n,n+1)=1 và (n+1, n+2)=1 (2)
+) TH1: n lẻ
khi đó: (n, n+2)=1 (3)
( chứng minh: đặt (n, n+2)=d => n , n+2 chia hế cho d=> 2 chia hết cho d và vì n lẻ=> n =1)
Từ (1), (2) , (3) ta có thể đặt: n=a^2, n+1=b^2, n+2=c^2 với a, b, c là số nguyên
=> b^2-a^2=1=> (b-a)(b+a)=1 => a=0 => n=0 loại
+) TH2: n chẵn
Đặt n=2k
=> 2k(2k+1)(2k+2)=4k(2k+1)(k+1) là số chính phương
=> k(2k+1)(k+1) là số chính phương
Tương tự thì chứng minh đc : (k, 2k+1)=1, (2k+1, k+1)=1 , (k+1, k)=1
=> Có thể đẳh k=a^2, k+1=b^2 tương tự như trên trường hợp nÀY CŨNG bị loại
n là số nguyên dương,\
G/s: n(n+1)(n+2) là số chính phương (1)
Ta luôn có: (n,n+1)=1 và (n+1, n+2)=1 (2)
+) TH1: n lẻ
khi đó: (n, n+2)=1 (3)
( chứng minh: đặt (n, n+2)=d => n , n+2 chia hế cho d=> 2 chia hết cho d và vì n lẻ=> n =1)
Từ (1), (2) , (3) ta có thể đặt: n=a^2, n+1=b^2, n+2=c^2 với a, b, c là số nguyên
=> b^2-a^2=1=> (b-a)(b+a)=1 => a=0 => n=0 loại
+) TH2: n chẵn
Đặt n=2k
=> 2k(2k+1)(2k+2)=4k(2k+1)(k+1) là số chính phương
=> k(2k+1)(k+1) là số chính phương
Tương tự thì chứng minh đc : (k, 2k+1)=1, (2k+1, k+1)=1 , (k+1, k)=1
=> Có thể đẳh k=a^2, k+1=b^2 tương tự như trên trường hợp nÀY CŨNG bị loại