Cho tam giác ABC vuông tại A, Kẻ \(AH\perp BC\left(H\in BC\right)\)
Vẽ điểm M sao cho AB là đường trung trực của MH, MH cắt AB tai I
Vẽ điểm N sao cho AC là đường trung trực của NH, NH cắt AC tại K
C/m :
a) A là trung điểm của MN
b) BM // CN
c) KI // MN
HELP ME ! ( NHỚ KẺ HÌNH NHA )
a) + ΔIAM = ΔIAH ( c.g.c )
\(\Rightarrow\left\{{}\begin{matrix}AM=AH\\\widehat{IAM}=\widehat{ỊAH}\end{matrix}\right.\) (1)
+ ΔKAH = ΔKAN ( c.g.c )
\(\Rightarrow\left\{{}\begin{matrix}AH=AN\\\widehat{KAH}=\widehat{KAN}\end{matrix}\right.\) (2)
+ Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}AM=AN\left(=AH\right)\\\widehat{MAN}=2\left(\widehat{IAH}+\widehat{KAH}\right)=180^o\end{matrix}\right.\)
=> AM = AN và M,A,N thẳng hàng
=> A là trung điểm của MN
b) + ΔBAH = ΔBAM ( c.g.c )
\(\Rightarrow\widehat{AHB}=\widehat{AMB}=90^o\)
+ Tương tự : \(\widehat{AHC}=\widehat{ANC}=90^o\)
Do đó : \(\widehat{AMB}+\widehat{ANC}=180^o\)
=> BM // CN
c) + IK là đường trung bình của ΔHMN
=> IK // MN