K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2019

A B C M I K E N

CM : a) Xét t/giác ABM và t/giác ACN

có AB = AC (gt)

   góc B = góc C ( vì t/giác ABC cân tại A)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

=> AM = AN (hai cạnh tương ứng)

b) Ta có: t/giác ABM = t/giác ACN (cmt)

=> góc BAM = góc CAN (hai góc tương ứng)

Xét t/giác AIM và t/giác AKN

có góc AIM = góc AKN = 900 (gt)

   AM = AN (cmt)

  góc IAM = góc KAN (cmt)

=> t/giác AIM = t/giác AKN ( ch - gn)

=> AI = AK (hai cạnh tương ứng)

c)tự làm

a)Có \(\Delta ABC\)cân \(\Rightarrow AB=AC\)và \(\widehat{B}=\widehat{C}\)

Xét \(\Delta AMB\)và \(\Delta ANC\)

\(AB=AC\left(cmt\right)\)

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

\(MB=MC\left(gt\right)\)

\(\Rightarrow\Delta AMB=\Delta ANC\left(c.g.c\right)\Rightarrow AM=AN\left(dpcm\right)\)

b) Có \(\Delta AMB=\Delta ANC\left(c.g.c\right)\Rightarrow\widehat{BAM}=\widehat{CAN}\)

Xét \(\Delta AIM\)và \(\Delta AKN\)có :

\(\widehat{AIM}=\widehat{AKN}=90^o\)

\(AM=AN\)

\(\widehat{BAM}=\widehat{CAN}\)

\(\Rightarrow\Delta AIM=\Delta AKN\left(ch-gn\right)\Rightarrow AI=AK\left(dpcm\right)\)

c) Xét \(\Delta IAE\)và \(\Delta KAE\)có :

\(AE:chung\)

\(\widehat{AIM}=\widehat{AKN}=90^o\)

\(AI=AK\left(cmt\right)\)

\(\Rightarrow\Delta IAE=\Delta KAE\left(ch-cgv\right)\)

\(\Rightarrow\widehat{IAE}=\widehat{KAE}\)  \(\Rightarrow AE\)là phân giác của \(\widehat{IAK}\)hay \(AE\)là phân giác của\(\widehat{BAC}\)

a: Xét ΔAMB và ΔANC có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔAMB=ΔANC

Suy ra: AM=AN

b: Xét ΔAIM vuông tại I và ΔAKN vuông tại K có

AM=AN

\(\widehat{IAM}=\widehat{KAN}\)

Do đó: ΔAIN=ΔAKN

Suy ra: AI=AK

a: Ta có: ΔAMB cân tại A

mà AE là đường trung tuyến

nên AE là đường phân giác

b: Ta có: ΔAMB cân tại A

mà AE là đường trung tuyến

nên AE là đường cao

18 tháng 2 2020

Ta có : Tam giác ABM cân tại B

=>MAB^=AMB^ (1)

Lại có : IMB^=IAB^=90* (2)

Từ 1 và 2 : +)IAM^=90*-MAB^

                  +)IMA^ =90*-AMB^

                  =>IAM^=IMA^

=>Tam giác IAM cân tại I

=>IA=iM

18 tháng 2 2020

A B C M I N K P 1 2
''∠'' là góc nhé.
a) Vì ∆ABC vuông tại A (GT) 
=> ∠BAC = 90o (ĐN) (1)
Vì IM ⊥ BC (GT)
=> ∠IMB = 90o 
Mà ∠BAC = 90o (Theo (1))
(Ngoặc ''}'' 2 điều trên)
=> ∠BAC = ∠IMB = 90o
Hay ∠BAI = ∠IMB = 90o (2)
Xét ∆ABI và ∆MBI có :
∠BAI = ∠IMB = 90o (Theo (2))
  BI chung
  BA = BM (Gt)
=> ∆ABI = ∆MBI (cạnh huyền - cạnh góc vuông)
=> AI = IM (2 cạnh tương ứng) (3)

b) Ta có : ∠BAC + ∠NAC = 180(2 góc kề bù)
    Mà ∠BAC = 90o (Theo (1))
=> 90o + ∠NAC = 180
=> ∠NAC = 180- 90o = 90o
Vì IM ⊥ BC (GT) => ∠IMC = 90(ĐN)
(Ngoặc ''}'' 2 điều trên)
=> ∠NAC = ∠IMC = 90o
Hay ∠NAI = ∠IMC = 90o (4)
Lại có : ∠I1 = ∠I2 (2 góc đối đỉnh) (5)
Xét ∆ANI và ∆MCI có :
∠NAI = ∠IMC = 90o (Theo (4))
AI = MI (Theo (3))
∠I1 = ∠I(Theo (5))
=> ∆ANI = ∆MCI (g.c.g)
=> AN = MC (2 cạnh tương ứng)
Mà AN + BA = BN
      MC + BM = BC 
     BA = BM (GT)
(Ngoặc ''}'' 4 điều trên)
=> BN = BC
=> ∆NBC cân tại B (ĐN)
P/s : Xin lỗi, mình chỉ làm được đến đây thôi, nghỉ nhiều quá nên mình ngu hẳn, có gì mình nghiên cứu lại sau :(.

19 tháng 2 2021

ME TOOgianroikhocroi

23 tháng 1 2022
24 tháng 10 2023

 

a) Do ABCD là hình vuông (gt)

\(\Rightarrow AB=AD\)

\(\widehat{ABM}=\widehat{ADN}=90^0\)

Xét hai tam giác vuông: \(\Delta ABM\) và \(\Delta ADN\) có:

\(AB=AD\left(cmt\right)\)

\(BM=DN\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta ADN\) (hai cạnh góc vuông)

\(\Rightarrow AM=AN\) (hai cạnh tương ứng)

\(\widehat{BAM}=\widehat{DAN}\) (hai góc tương ứng)

Ta có:

\(\widehat{BAM}+\widehat{DAM}=90^0\)

\(\Rightarrow\widehat{DAN}+\widehat{DAM}=90^0\)

\(\Rightarrow\widehat{MAN}=90^0\)

\(\Delta AMN\) có:

\(AM=AN\left(cmt\right)\)

\(\Rightarrow\Delta AMN\) cân tại A

Mà \(\widehat{MAN}=90^0\left(cmt\right)\)

\(\Rightarrow\Delta AMN\) vuông cân tại A

b) Do \(\Delta AMN\) cân tại A

E là trung điểm của MN

\(\Rightarrow AE\) là đường trung tuyến, cũng là đường cao của \(\Delta AMN\)

\(\Rightarrow AE\perp MN\)

\(\Rightarrow EF\perp MN\)

Xét hai tam giác vuông: \(\Delta FEM\) và \(\Delta FEN\) có:

\(EM=EN\left(gt\right)\)

\(EF\) là cạnh chung

\(\Rightarrow\Delta FEM=\Delta FEN\) (hai cạnh góc vuông)

\(\Rightarrow FM=FN\) (hai cạnh tương ứng)

Xét \(\Delta FAN\) và \(\Delta FAM\) có:

\(FA\) là cạnh chung

\(FN=FM\left(cmt\right)\)

\(AN=AM\left(cmt\right)\)

\(\Rightarrow\Delta FAN=\Delta FAM\left(c-c-c\right)\)

26 tháng 11 2023

loading... 

26 tháng 11 2023

loading... hình vẽ hơi xấu thông cảm :)))

a: Xét ΔBAD và ΔBMD có

BA=BM

góc ABD=góc MBD

BD chung

=>ΔBAD=ΔBMD

b: DA=DM

=>góc DAM=góc DMA