Cho phan so A=\(\frac{n+3}{n-1}\)
Tim n\(\varepsilon\)Z de A nhan gia tri lon nhat.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho phan so A= (6n- 1)/3n+2
tim n thuocZ de a co gia tri nguyen
tim n thuoc Z de a co gia tri lon nhat
câu GTLN nè:
A= \(2-\frac{5}{3n+2}\) => hiệu lớn nhất <=> số trừ: \(\frac{5}{3n+2}\) bé nhất vì 3n+2 thuộc Ư(5) nên ta xét:
* 3n+2=-1 => 5/-1=-5
* 3n+2=1 => 5/1=5
* 3n+2=5 => 5/5=1
* 3n+2=-5 => 5/-5=-1
=> 3n+2=-1 là nhỏ nhất <=> n= -1 (t/m đk)
\(\frac{n+1}{n-2}=\frac{\left(n-2\right)+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
Để \(\frac{3}{n-2}\in Z\) <=> 3 ⋮ n - 2 => n - 2 ∈ Ư ( 3 ) = { - 3 ; - 1 ; 1 ; 3 }
=> n ∈ { - 1 ; 1 ; 3 ; 5 }
Ta có A=\(\frac{6n-4}{2n+3}=\frac{6n+9-5}{2n+3}=3-\frac{5}{2n+3}\)
Để A nguyên thì 2n+3 \(\in\)Ư (5) ={\(\pm1;\pm5\)}
thay lần lượt vào để tìm n nha bn
để P thuộc Z =>2n+1 chia hết cho n+5
=>2n+10-9 chia hết cho n+5
=>2(n+5)-9 chia hết cho n+5
=>9 chia hết cho n+5
\(\Rightarrow n+5\in\left\{-9;-3;-1;1;3;9\right\}\)
\(\Rightarrow n\in\left\{-14;-8;-6;-4;-2;4\right\}\)
Cac ban lam day du cho minh nha!!!!!
Ai lam xong som nhat minh se k
\(A=\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=1+\frac{4}{n-1}\)
Để A lớn nhất suy ra \(\frac{4}{n-1}\) lớn nhất
Suy ra \(n-1\) là số nguyên dương nhỏ nhất vì \(n\in Z\)
\(\Rightarrow n-1=1\Rightarrow n=2\)
\(\Rightarrow A_{max}=5\Leftrightarrow n=2\)