K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2019

sửa đề: a,b,c là 3 số nguyên dương

\(\text{vì }a,b,c\text{ là 3 số nguyên dương}\)

\(\text{Có: }\hept{\begin{cases}\frac{a}{a+b+c}< \frac{a}{b+c}\\\frac{b}{a+b+c}< \frac{b}{c+a}\\\frac{c}{a+b+c}< \frac{c}{a+b}\end{cases}}\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>1 \)

28 tháng 11 2019

Đặt \(\left(\frac{a}{b^2},\frac{b}{c^2},\frac{c}{a^2}\right)=\left(x,y,z\right)\)

\(\Rightarrow xyz=\frac{abc}{a^2b^2c^2}=\frac{1}{abc}=1\)

Theo bài ra ta có : \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)

\(\Leftrightarrow x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Leftrightarrow x+y+z=xy+yz+xz\)

\(\Leftrightarrow\left(xy-x-y+1\right)-1+z\left(x+y-1\right)=0\)

\(\Leftrightarrow\left(xy-x-y+1\right)+z\left(x+y-1-xy\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)-z\left(x-1\right)\left(y-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(1-z\right)=0\)

\(\Leftrightarrow\frac{a-b^2}{b^2}.\frac{b-c^2}{c^2}.\frac{a^2-c}{a^2}=0\)

\(\Leftrightarrow\left(a-b^2\right)\left(b-c^2\right)\left(c-a^2\right)=0\)

Ta có đpcm

27 tháng 4 2019

Từ \(a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\Leftrightarrow a+b+c>\frac{ab+bc+ac}{abc}=ab+bc+ac..\)

\(\Leftrightarrow a+b+c-ab-bc-ac>0\Leftrightarrow\left(abc-1\right)+a+b+c-ab-ac-bc>0\)

\(\Leftrightarrow\left(abc-ab\right)+\left(c-1\right)+\left(a-ac\right)+\left(b-bc\right)>0\)

\(\Leftrightarrow ab\left(c-1\right) +\left(c-1\right)-a\left(c-1\right)-b\left(c-1\right)>0\)

\(\Leftrightarrow\left(c-1\right)\left[\left(ab-a\right)+\left(1-b\right)\right]>0\)

\(\Leftrightarrow\left(c-1\right)\left[a\left(b-1\right)-\left(b-1\right)\right]>0\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)

Ta xảy ra 2 trường hợp:

Trường hợp 1: Trong 3 nhân tử (a-1), (b-1), (c-1) có 2 nhân tử nhỏ hơn 0, một nhân tử lớn hơn 0

=> Trong 3 số a, b, c có 2 số nhỏ hơn 1 , một số lớn hơn 1 (1)

Trường hợp 2: 3 nhân tử (a-1), (b-1), (c-1) đều lớn hơn 0 

=> 3 số a, b,c lớn hơn 1 (2) 

Từ (1) và (2) ta có điều phải chứng minh.

22 tháng 8 2019

Bài làm

\(a+b+c\)\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow a+b+c=\frac{ab+bc+ca}{abc}\)

\(\Leftrightarrow a+b+c-ab-bc-ca=0\)

\(\Leftrightarrow a+b+c-ab-bc-ca+abc-1=0\)

\(\Leftrightarrow\left(a-ac\right)+\left(b-bc\right)+\left(-ab+abc\right)+\left(c+1\right)=0\)

\(\Leftrightarrow-a\left(c-1\right)-b\left(c-1\right)+ab\left(c-1\right)+\left(c-1\right)=0\)

\(\Leftrightarrow\left(-a-b+ab+1\right)\left(c-1\right)=0\)

\(\Leftrightarrow\left[b\left(a-1\right)-\left(a-1\right)\right]\left(c-1\right)\)
\(\Leftrightarrow\left(b-1\right)\left(a-1\right)\left(c-1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=1\end{cases}}\)(đpcm)

NV
29 tháng 2 2020

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2b^2}{b^2c^2}}\ge\frac{2a}{c}\) ; \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\) ; \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)

Cộng vế với vế ta có đpcm

Dấu "=" xảy ra khi \(a=b=c\)

2. \(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc.ac}{ab}}=2c\) ; \(\frac{ac}{b}+\frac{ab}{c}\ge2a\) ; \(\frac{bc}{a}+\frac{ab}{c}\ge2b\)

Cộng vế với vế ta có đpcm

Dấu "=" xảy ra khi \(a=b=c\)

16 tháng 12 2018

Theo tc của DTSBN

\(\frac{a+b-3c}{c}=\frac{b+c-3a}{a}=\frac{c+a-3b}{b}=\frac{a+b-3c+b+c-3a+c+a-3b}{c+a+b}\)

                                                                                       \(=\frac{-a-b-c}{a+b+c}=-1\)

\(\Rightarrow\hept{\begin{cases}a+b-3c=-c\\b+c-3a=-a\\c+a-3b=-b\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)

\(\Rightarrow a=b=c\left(đpcm\right)\)

30 tháng 1 2016

mình ko biết

8 tháng 5 2018

Áp dụng BĐT Cauchy Sshwarz, ta có:

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\) 

Mà a+b+c>2

\(\Rightarrow VT>1\) (đpcm)

10 tháng 11 2017

Đặt A=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ab}+\frac{c^2}{ac+bc}\)

Áp dụng BĐT bunhiacopxki dạng phân thức ta có:

A\(\ge\)\(\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\ge\frac{3\left(ab+bc+ac\right)}{2\left(ab+bc+ac\right)}=\frac{3}{2}\Rightarrowđpcm\)

3 tháng 4 2018

cộng 1 rồi dùng bdt (a+b+c)(1/a+1/b+1/c)>=9