Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=2008;\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2008\)
\(\Rightarrow a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(b+c\right)+a\left(ab+ac\right)+abc-abc=0\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(b+c\right)+a^2\left(b+c\right)=0\)
\(\Leftrightarrow\left(ab+bc+ac+a^2\right)\left(b+c\right)=0\)
\(\Leftrightarrow\left[b\left(a+c\right)+a\left(a+c\right)\right]\left(b+c\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow\)Hoặc a + b = 0 hoặc b + c = 0 hoặc a + c = 0
Vậy 1 trong 3 số bằng 2008 (đpcm)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow\frac{ab+bc+ca}{abc}=1\Rightarrow ab+bc+ca=abc\)\
Ta có: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=ab+bc+ca-abc=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Từ đây ta suy ra đpcm.
a) Chứng minh được BĐT \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)(*)
Dấu "=" xảy ra <=> a=b
Áp dụng BĐT (*) vào bài toán ta có:
\(\hept{\begin{cases}\frac{1}{2x+y+z}=\frac{1}{x+y+x+y}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\\\frac{1}{x+2y+z}=\frac{1}{x+y+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\\\frac{1}{x+y+2z}=\frac{1}{x+y+z+z}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\end{cases}}\)
\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
Tiếp tục áp dụng BĐT (*) ta có:
\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right);\frac{1}{y+z}\le\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}\right);\frac{1}{z+x}\le\frac{1}{4}\left(\frac{1}{z}+\frac{1}{x}\right)\)
\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\cdot\frac{1}{4}\cdot2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)
\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)
Dấu "=" xảy ra <=> \(x=y=z=\frac{3}{4}\)
b) áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)ta có:
\(\hept{\begin{cases}\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\\\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{b+c-a+a+c-b}=\frac{4}{2c}=\frac{2}{c}\\\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{a+b-c+a+c-b}=\frac{4}{2a}=\frac{2}{a}\end{cases}}\)
Cộng theo vế 3 BĐT ta có:
\(2VT\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2VP\)
\(\Rightarrow VT\ge VP\)
Đẳng thức xảy ra <=> a=b=c
Bạn tham khảo:
Câu hỏi của Nguyễn Bùi Đại Hiệp - Toán lớp 8 | Học trực tuyến
Câu hỏi của 『-Lady-』 - Toán lớp 8 - Học toán với OnlineMath
Tham khảo ở link trên nha
Từ \(a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\Leftrightarrow a+b+c>\frac{ab+bc+ac}{abc}=ab+bc+ac..\)
\(\Leftrightarrow a+b+c-ab-bc-ac>0\Leftrightarrow\left(abc-1\right)+a+b+c-ab-ac-bc>0\)
\(\Leftrightarrow\left(abc-ab\right)+\left(c-1\right)+\left(a-ac\right)+\left(b-bc\right)>0\)
\(\Leftrightarrow ab\left(c-1\right) +\left(c-1\right)-a\left(c-1\right)-b\left(c-1\right)>0\)
\(\Leftrightarrow\left(c-1\right)\left[\left(ab-a\right)+\left(1-b\right)\right]>0\)
\(\Leftrightarrow\left(c-1\right)\left[a\left(b-1\right)-\left(b-1\right)\right]>0\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)
Ta xảy ra 2 trường hợp:
Trường hợp 1: Trong 3 nhân tử (a-1), (b-1), (c-1) có 2 nhân tử nhỏ hơn 0, một nhân tử lớn hơn 0
=> Trong 3 số a, b, c có 2 số nhỏ hơn 1 , một số lớn hơn 1 (1)
Trường hợp 2: 3 nhân tử (a-1), (b-1), (c-1) đều lớn hơn 0
=> 3 số a, b,c lớn hơn 1 (2)
Từ (1) và (2) ta có điều phải chứng minh.
Bài làm
\(a+b+c\)\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow a+b+c=\frac{ab+bc+ca}{abc}\)
\(\Leftrightarrow a+b+c-ab-bc-ca=0\)
\(\Leftrightarrow a+b+c-ab-bc-ca+abc-1=0\)
\(\Leftrightarrow\left(a-ac\right)+\left(b-bc\right)+\left(-ab+abc\right)+\left(c+1\right)=0\)
\(\Leftrightarrow-a\left(c-1\right)-b\left(c-1\right)+ab\left(c-1\right)+\left(c-1\right)=0\)
\(\Leftrightarrow\left(-a-b+ab+1\right)\left(c-1\right)=0\)
\(\Leftrightarrow\left[b\left(a-1\right)-\left(a-1\right)\right]\left(c-1\right)\)
\(\Leftrightarrow\left(b-1\right)\left(a-1\right)\left(c-1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=1\end{cases}}\)(đpcm)