1 xe máy đu từ A đến B vs vận tốc là 40km/h, sau khi đi được 30 phút thì xe máy dừng lại nghỉ, do đó để kịp đến B đúng thời gian đX ĐỊNH THÌ XE MÁY PHẢI TĂNG TỐC THÊM 5KM/H .TÍNH QUÃNG ĐƯỜNG AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi quãng đường AB là x (km, x>0)
Xe dự định đi từ A đến B với vận tốc 35km/h
\(\to\) Thời gian dự định xe đi là \(\dfrac{x}{35}\) (h)
Vì nửa đường thứ nhất vận tốc không thay đổi nhưng phải dừng lại 15p
\(\to\) Thời gian xe đi hết nửa quãng đường thứ nhất là \(\dfrac{\dfrac{x}{2}}+\dfrac{1}{4}=\dfrac{x}{70}+\dfrac{1}{4}\) (h)
Nửa quãng đường thứ hai xe tăng vận tốc thêm 5km/h để đến B đúng như dự định
\(\to\) Thời gian đi nửa quãng đường thứ hai là \(\dfrac{\dfrac{x}{2}}{35+5}=\dfrac{x}{80}\) (h)
Vì xe đến B đúng như thời gian dự định
\(\to\) Ta có pt: \(\dfrac{x}{70}+\dfrac{1}{4}+\dfrac{x}{80}=\dfrac{x}{35}\)
\(\leftrightarrow 8x+140+7x=16x\)
\(\leftrightarrow 15x-16x=-140\)
\(\leftrightarrow -x=-140\)
\(\leftrightarrow x=140\) (TM)
Vậy quãng đường AB là 140km
Gọi C là địa điểm người lái xe máy dừng lại để sửa xe :
Quãng đường AC xe máy đi với vận tốc 35km/h và đi trong 1 giờ :
⇒ S(AC) = 35.1 = (km).
Gọi quãng đường BC dài là x (km) (x>0)
Vận tốc dự tính đi trên BC là : 35km/h
=> Thời gian dự tính đi hết quãng đường BC : x/35
Thực tế do phải sửa xe nên xe máy đi hết quãng đường BC với vận tốc : 35+5=40 (km/h)
⇒ Thời gian thực tế xe máy đi quãng đường BC là: x/40 (giờ).
Thời gian chênh nhau giữa dự tính và thực tế chính là thời gian xe máy phải sửa là 30 phút = 1/2 (giờ).
Do đó ta có phương trình:
x/35 - x/40 =1/2
<=> 8x/280 - 7x/280 = 140/280
<=> 8x - 7x = 140
⇔ x = 140 (thỏa mãn) nên quãng đường BC là 140 (km).
Vậy quãng đường AB là:
S(AB) = S(AC) + S(BC) = 35 + 140 = 175 (km).
Nhớ tick nhé =)))
Gọi độ dài quãng đường AB là x
Theo đề, ta có: \(\dfrac{x}{35}=\dfrac{\dfrac{x}{2}}{35}+\dfrac{1}{4}+\dfrac{\dfrac{x}{2}}{40}\)
=>1/35x-1/70x-1/80x=1/4
=>x=2240
Gọi độ dài quãng đường AB là \(x\left(km,x>0\right)\)
Thời gian dự kiến xe máy đi từ A đến B là \(\frac{x}{35}\left(h\right)\)
Một nửa quãng đường AB là \(\frac{x}{2}\left(km\right)\)
Thời gian thực tế xe máy đi từ A đến chỗ xe bị hỏng là \(\frac{x}{2}:35=\frac{x}{70}\left(h\right)\)
Vận tốc lúc sau là \(35+5=40\left(km/h\right)\)
Thời gian thực tế xe máy đi từ chỗ xe hỏng đến B là \(\frac{x}{2}:40=\frac{x}{80}\left(h\right)\)
Vì người đó đến B đúng thời gian đã định nên ta có phương trình \(\frac{x}{70}+\frac{x}{80}+\frac{1}{4}=\frac{x}{35}\)(cả thời gian nghỉ là 15p)
\(\Leftrightarrow\frac{8x+7x+140}{560}=\frac{16x}{560}\) \(\Leftrightarrow15x+140=16x\)\(\Leftrightarrow x=140\)(nhận)
Vậy quãng đường AB dài \(140km\)
Gọi x km là quãng đường AB (x>0)
Thời gian dự định đi: x/40 (h)
Quãng đường còn phải đi sau khi đã đi 1 giờ: x - 40 (km)
Vận tốc mới: 40 + 5 = 45 (km/h)
Thời gian đi đến B với vận tốc mới: (x - 40) / 45 (h)
15 phút = 1/4 h
Từ các kết quả trên ta có phương trình biểu diễn:
1 + (1/4) + {(x - 40) / 45} = (x/40)
( một giờ đi với vận tốc 40 km + 15 phút nghỉ + thời gian đi với vận tốc mới thì bằng thời gian dự định)
Sau khi quy đồng, khử mẫu và rút gọn ta sẽ có:
5x = 650
=> x = 130 (thỏa mãn)
=> Quãng đường AB dài 130 km.
Gọi độ dài quãng đường AB là: \(x\left(km\right)\left(x>0\right)\)
Thời gian xe máy dự định đi là: \(\frac{x}{40}\left(h\right)\)
Sau 30 phút, xe máy đã đi được quãng đường là: \(40.\frac{1}{2}=20\left(km\right)\)
Thời gian xe máy đi hết quãng đường AB theo thực tế là: \(\frac{1}{2}+\frac{x-20}{45}\left(h\right)\)
Theo bài ra: \(\frac{1}{2}+\frac{x-20}{45}=\frac{x}{40}\)
\(\Leftrightarrow\frac{180+8\left(x-20\right)}{360}=\frac{9x}{360}\)
\(\Leftrightarrow180+8\left(x-20\right)=9x\Leftrightarrow8x+20=9x\Leftrightarrow x=20\)
Quãng đường AB dài 20 km