K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2019

Đề này của bọn Vĩnh Phúc thì phải

Xét hàm \(f\left(c\right)\)trên [1;2] trong đó

                                                  \(f\left(c\right)=\left(\frac{\left(6-c\right)^2}{4}+2\right)^2\left(c^2+2\right)\)

\(f'\left(c\right)=-2\left(\frac{\left(6-c\right)^2}{4}+2\right)\left(\frac{6-c}{2}\right)\left(c^2+2\right)+\left(\frac{\left(6-c\right)^2}{4}+2\right)^2.2c\)

            \(=\left(\frac{\left(6-c\right)^2}{4}+2\right)^2.\left(2c-\frac{\left(6-c\right)\left(c^2+2\right)}{\frac{\left(6-c\right)^2}{4}+2}\right)\)

            \(=2\left(\frac{\left(6-c\right)^2}{4}+2\right)^2\left(\frac{c\left[\left(6-c\right)^2+8\right]-2\left(6-c\right)\left(c^2+2\right)}{\left(6-c\right)^2+8}\right)\)

Ta đi xét dấu của \(c\left[\left(6-c\right)^2+8\right]-2\left(6-c\right)\left(c^2+2\right)\)trên (1;2)

Ta có : \(c\left[\left(6-c\right)^2+8\right]-2\left(6-c\right)\left(c^2+2\right)=3\left(c^3-8c^2+16c-8\right)\)

                                                                                               \(=3\left(c-2\right)\left(c^2-6c+4\right)\)

                                                                                               \(=3\left(c-2\right)\left(c-3-\sqrt{5}\right)\left(c-3+\sqrt{5}\right)\)

                                                                                                \(>0\forall c\in\left(1;2\right)\)

Do đó \(f'\left(c\right)>0\forall c\in\left(1;2\right)\)nên hàm f(c) đồng biến trên [1;2] 

Từ đó suy ra \(f\left(c\right)\le f\left(2\right)=216\)

Dấu ''='' <=> a = b = c = 2

11 tháng 6 2023

\(\)Ta có: \(a+b+c=0 \Rightarrow b+c=-a \Rightarrow (b+c)^2=(-a)^2 \Leftrightarrow b^2+c^2+2bc=a^2 \Leftrightarrow a^2-b^2-c^2=2bc\)

Tương tự: \(b^2-c^2-a^2=2ca;c^2-a^2-b^2=2ab\)

\(P=...=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)

----
Bổ đề \(a+b+c=0 \Leftrightarrow a^3+b^3+c^3\)

Ở đây ta c/m chiều thuận:
Với \(a+b+c=0 \Leftrightarrow a+b=-c \Rightarrow (a+b)^3=(-c)^3 \Leftrightarrow a^3+b^3+3ab(a+b)=-c^3 \Leftrightarrow a^3+b^3+c^3=3abc(QED)\)

NV
12 tháng 6 2021

Đặt \(P=2ab+2bc+2abc-5ac\), ta sẽ chứng minh \(-15\le P\le7\)

Ta có:

\(P=2b\left(a+c\right)+2abc-5ac\le b^2+\left(a+c\right)^2+2abc-5ac\)

\(P\le a^2+b^2+c^2+2abc-3ac=6+2abc-3ac=ac\left(2b-3\right)+6\)

- Nếu \(b\le\dfrac{3}{2}\Rightarrow P< 6< 7\) (đúng)

- Nếu \(b>\dfrac{3}{2}\Rightarrow P\le\dfrac{1}{2}\left(a^2+c^2\right)\left(2b-3\right)+6=\dfrac{1}{2}\left(6-b^2\right)\left(2b-3\right)+6\)

\(\Rightarrow P\le7-\dfrac{1}{2}\left(b-2\right)^2\left(2b+5\right)\le7\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;2;1\right)\)

Đồng thời:

\(P=2\left(ab+bc+abc\right)-5ac\ge-5ac\ge-\dfrac{5}{2}\left(a^2+c^2\right)=-\dfrac{5}{2}\left(6-b^2\right)=-15+\dfrac{5}{2}b^2\ge-15\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\sqrt{3};0;\sqrt{3}\right)\)

9 tháng 1 2021

Thay \(a=-\left(b+c\right)\) ; \(a+c=-b\) và \(a+b=-c\) vào điều kiện thứ 2 ta có 

\(\left(b+c\right)^2=2\left(-b+1\right)\left(-c-1\right)\)

 <=> \(b^2+c^2+2bc=2bc+2b-2c-2\)

<=> \(\left(b-1\right)^2+\left(c+1\right)^2=0\) <=> \(\left\{{}\begin{matrix}b=1\\c=-1\end{matrix}\right.\)

suy ra: a=0. Vậy A = a2 + b2 + c2 = 2

 

26 tháng 12 2021

bạn ơi tại sao (b−1)^2+(c+1)^2=0??

11 tháng 11 2019

Ta có:

0 < a < 1 ⇒ a - 1 < 0 ⇒ a(a - 1) < 0 ⇒ a2 - a < 0 (1)

Tương tự:

0 < b < 1 ⇒ b2 - b < 0 (2)

0 < c < 1 ⇒ c2 - c < 0 (3)

Cộng (1); (2); (3) vế theo vế ta được:

a2 + b2 + c2 - a - b - c < 0

⇔ a2 + b2 + c2 < a + b + c

⇔ a2+ b2 + c2 < 2 (do a + b + c = 2)