Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^2}{a^2-b^2-c^2}=\frac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}=\frac{a^2}{-c\left(a-b\right)-c^2}=\frac{a^2}{-c\left(a-b+c\right)}=\frac{a^2}{2bc}\)
Tương tự \(\Rightarrow P=\frac{a^3+b^3+c^3}{2abc}\)
Mặt khác khi \(a+b+c=0\) dễ dàng chứng minh \(a^3+b^3+c^3=3abc\)
\(\Rightarrow P=\frac{3}{2}\)
\(\text{Ta có: }\frac{a^2}{1}+\frac{1}{a^2}\ge2\)Dấu = xảy ra khi a=1
cách c/m:
\(\text{Xét }a^2=1\Leftrightarrow\frac{a^2}{1}+\frac{1}{a^2}=2\)
\(\text{Xét }a^2>1.\text{Đặt }a^2=k+1\left(k>0\right)\text{ta có:}\frac{k+1}{1}+\frac{1+k-k}{k+1}=\frac{k}{1}+1+1-\frac{k}{k+1}=2+\frac{k^2}{k+1}>2\left(\text{Vì }k>0\right)\)
\(\text{Xét }a^2< 1.\text{Đặt }a^2=1-k,\text{ta có: }\frac{1-k}{1}+\frac{1-k+1}{1-k}=1-\frac{k}{1}+1+\frac{1}{1-k}=2+\frac{k^2-k+1}{1-k}\)
\(k^2-k+\frac{1}{4}+\frac{3}{4}=\left(k-\frac{1}{2}\right)^2+\frac{3}{4}>0\)(1)
\(1-k=a^2,a^2>0\Rightarrow1-k>0\)(2)
từ (1) và (2) \(\Rightarrow\frac{k^2-k+1}{1-k}>0\Rightarrow2+\frac{k^2-k+1}{1-k}>2\)
\(\text{ }\frac{b^2}{1}+\frac{1}{b^2}\ge2\)Dấu = xảy ra khi b=1
\(\frac{c^2}{1}+\frac{1}{c^2}\ge2\) Dấu = xảy ra khi c=1
\(\Leftrightarrow\left(a^2+\frac{1}{a^2}\right)+\left(b^2+\frac{1}{b^2}\right)+\left(c^2+\frac{1}{c^2}\right)\ge6\)
Dấu = xảy ra khi \(a=b=c=1\)
??? ghi sai đề ko bạn? =3 chứ ?
p/s: sai sót bỏ qua >:
Bên dưới là chứng minh bằng 3 hay 6 bạn? Sao bằng 6 được nhỉ?
a) \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm.
Đẳng thức khi \(a=b=c\)
b) \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm
Đẳng thức khi \(a=b=1\)
Các bài tiếp theo tương tự :v
g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)
i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)
Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)
Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm
j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm
tìm trc khi hỏi Câu hỏi của mai - Toán lớp 9 | Học trực tuyến
Lời giải:
Ta có:
\(\text{VT}=a-\frac{ab(a+b)}{a^2+ab+b^2}+b-\frac{bc(b+c)}{b^2+bc+c^2}+c-\frac{ca(c+a)}{c^2+ca+a^2}\)
\(=a+b+c-\left(\frac{ab(a+b)}{a^2+ab+b^2}+\frac{bc(b+c)}{b^2+bc+c^2}+\frac{ca(c+a)}{c^2+ca+a^2}\right)\)
Áp dụng BĐT AM-GM:
\(\text{VT}\geq a+b+c-\left(\frac{ab(a+b)}{2ab+ab}+\frac{bc(b+c)}{2bc+bc}+\frac{ca(c+a)}{2ac+ac}\right)\)
\(\Leftrightarrow \text{VT}\geq a+b+c-\frac{2}{3}(a+b+c)=\frac{a+b+c}{3}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c\)
\(\)Ta có: \(a+b+c=0 \Rightarrow b+c=-a \Rightarrow (b+c)^2=(-a)^2 \Leftrightarrow b^2+c^2+2bc=a^2 \Leftrightarrow a^2-b^2-c^2=2bc\)
Tương tự: \(b^2-c^2-a^2=2ca;c^2-a^2-b^2=2ab\)
\(P=...=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)
----
Bổ đề \(a+b+c=0 \Leftrightarrow a^3+b^3+c^3\)
Ở đây ta c/m chiều thuận:
Với \(a+b+c=0 \Leftrightarrow a+b=-c \Rightarrow (a+b)^3=(-c)^3 \Leftrightarrow a^3+b^3+3ab(a+b)=-c^3 \Leftrightarrow a^3+b^3+c^3=3abc(QED)\)