K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2019

Ta có : \(\frac{2}{3}x=\frac{3}{4}y=\frac{5}{6}z\)

\(\Rightarrow\frac{8}{12}x=\frac{9}{12}y=\frac{10}{12}z\)

\(\Rightarrow8x=9y=10z\)

\(\Rightarrow\frac{8x}{360}=\frac{9y}{360}=\frac{10z}{360}\)

\(\Rightarrow\frac{x}{45}=\frac{y}{40}=\frac{z}{36}\)

\(\Rightarrow\frac{x}{45}=\frac{2y}{80}=\frac{z}{36}\)

ADTCDTSBN , ta có 

\(\frac{x}{45}=\frac{2y}{80}=\frac{z}{36}=\frac{x+2y+z}{45+80+36}=\frac{-39}{161}\)

Do đó : \(x=\frac{-39}{161}.45=-10\frac{145}{161}\)

\(y=\frac{-39}{161}.40=-9\frac{111}{161}\)

\(z=\frac{-39}{161}.36=-8\frac{116}{161}\)

Vậy x , y , z lần lượt là .........

14 tháng 7 2016

a./ \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{10}{20}=\frac{1}{2}\)

\(\Rightarrow x=\frac{5}{2};y=2;z=\frac{7}{2}\)

14 tháng 7 2016

b./ \(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y}{9}=\frac{18}{9}=2\)

\(\Rightarrow x=2\cdot4=8;y=2\cdot5=10;z=2\cdot2=4\)

a) Áp dụng TC của dãy tỉ số bằng nhau ta có:

\(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y-z}{4+5-2}=\frac{3}{7}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3}{7}.4\\y=\frac{3}{7}.5\\z=\frac{3}{7}.2\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{12}{7}\\y=\frac{15}{7}\\z=\frac{6}{7}\end{cases}}}\)

16 tháng 9 2019

\(a,\frac{x}{4}=\frac{y}{5}=\frac{z}{2}\) và x + y - z = 3

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y-z}{4+5-2}=\frac{3}{7}\)

=> \(\hept{\begin{cases}\frac{x}{4}=\frac{3}{7}\\\frac{y}{5}=\frac{3}{7}\\\frac{z}{2}=\frac{3}{7}\end{cases}}\)=> \(\hept{\begin{cases}7x=12\\7y=15\\7z=6\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{12}{7}\\y=\frac{15}{7}\\z=\frac{6}{7}\end{cases}}\)

\(b,\frac{x}{5}=\frac{y}{4}=\frac{z}{6}\) và 2x - 2y + 4z = -3

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{4}=\frac{z}{6}=\frac{2x}{10}=\frac{2y}{8}=\frac{4z}{24}=\frac{2x-2y+4z}{10-8+24}=\frac{-3}{26}\)

Tìm nốt x,y,z

2 tháng 11 2019

Tính chất của dãy tỉ số bằng nhauTính chất của dãy tỉ số bằng nhauMấy bài còn lại tương tự nhé cậu

22 tháng 11 2019

\(\frac{x-1}{3}=\frac{2y-1}{4}=\frac{z+2}{5}=\frac{y+t+3}{6}\)\(=\frac{x-1+2y-1+z+2-y-t-3}{3+4+5-6}\)

\(=\frac{x+y+z-t-3}{6}=\frac{1-3}{6}=-\frac{1}{3}\)

=> \(x-1=-1;2y-1=-\frac{4}{3};z+2=-\frac{5}{3};y+t+3=-2\)

=> \(x=0;y=-\frac{1}{6};z=-\frac{11}{3};t=-\frac{29}{6}\)

22 tháng 11 2019

Ta có x + y + z - t = 1

=> x + y + z = 1 + t

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x-1}{3}=\frac{2y-1}{4}=\frac{z+2}{5}=\frac{y+t+3}{6}=\frac{x-1+2y-1+z+2-y-t-3}{3+4+5-6}=\frac{-2}{6}=\frac{-1}{3}\)

=> x = 0 ; y = -1/6 ; z = -11/3 ; t = - 5/6 

20 tháng 7 2016

a)Vì \(x:y:z=2:3:\left(-4\right)\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}\)

          Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y+z}{2-3+-4}=\frac{-125}{-5}=25\)

\(\Rightarrow\begin{cases}\frac{x}{2}=25\\\frac{y}{3}=25\\\frac{z}{-4}=25\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=50\\y=75\\z=-100\end{cases}\)

Vậy x=50;y=75;z=-100

d)Vì 2x=3y\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)(1)

       5y=7z\(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)(2)

                       Từ (1) và (2) suy ra:\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Áp dụng dãy tỉ số bằng nhau ta có:

      \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)

\(\Rightarrow\begin{cases}\frac{x}{21}=2\\\frac{y}{14}=2\\\frac{z}{10}=2\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=42\\y=28\\z=20\end{cases}\)

 

20 tháng 7 2016

giúp b, c với ạ

12 tháng 7 2019

a

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)

Thay vào,ta được:

\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)

\(\Leftrightarrow4k+2+9k+6-4k-3=50\)

\(\Leftrightarrow9k+5=50\)

\(\Leftrightarrow9k=45\)

\(\Leftrightarrow k=5\)

12 tháng 7 2019

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)

\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)

\(\Rightarrow x=2\cdot2+1=5\)

\(y=4\cdot2-3=5\)

\(z=2\cdot6+5=17\)

Câu c tương tự như câu 1

13 tháng 10 2016

a) Ta có: x/2 = y/3 => x/8 = y/12 (1)

y/4 = z/5 => y/12 = z/15 (2)

Từ (1) và (2) => x/8 = y/12 = z/15

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2

x/8 = 2 => x = 2 . 8 = 16

y/12 = 2 => y = 2 . 12 = 24

z/15 = 2 => z = 2 . 15 = 30

Vậy x = 16; y = 24 và z = 30

b) Ta có: x/2 = y/3 => x/10 = y/15 (1)

y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)

Từ (1) và (2) => x/10 = y/15 = z/12

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

    x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7

x/10 = -7 => x = -7 . 10 = -70

y/15 = -7 => y = -7 . 15 = -105

z/12 = -7 => z = -7 . 12 = -84

Vậy x = -70; y = -105 và z = -84

c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5

x/2 = 5 => x = 5 . 2 = 10

y/3 = 5 => y = 5 . 3 = 15

z/4 = 5 => z = 5 . 4 = 20

Vậy x = 10; y = 15 và z = 20.