cho x/z=z/y.Chứng minh:x^2+z^2/y^2+z^2=x/y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x}{z}=\frac{z}{y}\rightarrow xy=z^2\)Thay vào ta có:
\(\frac{x^2+z^2}{y^2+z^2}=\frac{x^2+xy}{y^2+xy}=\frac{x\left(x+y\right)}{y\left(x+y\right)}=\frac{x}{y}\)(đpcm)
Vậy...
Ta có:
\(\frac{x}{z}=\frac{z}{y}\Rightarrow z^2=x.y\)
\(\Leftrightarrow\frac{x^2+z^2}{y^2+z^2}=\frac{x^2+xy}{y^2+xy}=\frac{x\left(x+y\right)}{y\left(y+x\right)}=\frac{x}{y}\)
Vậy khi \(\frac{x}{z}=\frac{z}{y}\)thì \(\frac{x^2+z^2}{y^2+z^2}=\frac{x}{y}\)
Chúc em học tốt nhé!
Ta có: x2=yz,y2=xz,z2=xy
=>x2+y2+z2=yz+xz+xy
=>2x2+2y2+2z2=2xy+2yz+2xz
=>2x2+2y2+2z2-2xy-2yz-2xz=0
=>(2x2-2xy)+(2y2-2yz)+(2z2-2xz)=0
=>(x2-2xy+x2)+(y2-2yz+y2)+(z2-2xz+z2)=0
=>(x-y)2+(y-z)2+(z-x)2=0
Ta thấy : (x-y)2>0 với mọi x,y
(y-z)2>0 với mọi y,z
(z-x)2>0 với mọi x,z
=>(x-y)2+(y-z)2+(z-x)2>0 với mọi x,y,z
Mà (x-y)2+(y-z)2+(z-x)2=0
=>(x-y)2=(y-z)2=(z-x)2=0
=>x-y=y-z=z-x=0
=>x=y=z
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\) \(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\) \(\Rightarrow ayz+bxz+cxy=0\) \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) \(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy+bxz+ayz}{abc}\right)=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{0}{abc}\right)=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
x+y+z=1 <=> (x+y+z)^3=1
<=> x^3+y^3+z^3+3(x+y)(y+z)(z+x)=1
<=> 1+3(x+y)(y+z)(z+x)=1
<=> 3(x+y)(y+z)(z+x)=0
<=> (x+y)(y+z)(z+x)=0
<=> x+y=0 hoặc y+z=0 hoặc z+x=0
+) x+y=0 <=> x=-y
Thay vào đề ta được: x+y+z=(-y)+y+z=1
<=> z=1
Thay vào x^2+y^2+z^2=1 ta được: (-y)^2+y^2+1^2=1
<=> 2y^2=0 <=> y=0=x
x+y^2+z^3=0+0^2+1^3=1
Tương tự với 2 trường hợp còn lại ta có đpcm
Xét 3 số dư của x,y,z khi chia cho 3
+) Nếu 3 số dư là khác nhau thì 3 số dư đó là 0, 1 và 2. Khi đó \(\left(x+y+z\right)⋮3\)
Khi đó, ta cũng có \(\left(x-y\right);\left(y-z\right);\left(z-x\right)\)đều không chia hết cho 3
\(\Rightarrow\) \(\left(x-y\right)\left(y-z\right)\left(z-x\right)\)không chia hết cho 3 ( vô lý )
+) Nếu có 2 số dư bằng nhau thì x + y + z không chia hết cho 3
Trong khi đó một trong 3 hiệu x - y ; y - z ; z - x chia hết cho 3
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)\) không chia hết cho 3 ( vô lý )
+) Nếu có 3 số dư bằng nhau thì \(\left(x-y\right)⋮3\); \(\left(y-z\right)⋮3\); \(\left(z-x\right)⋮3\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮27\)
Mà \(\left(x-y\right)\left(y-z\right)\left(z-x\right)=x+y+z\Rightarrow x+y+z⋮27\)
Vậy ta có điều phải chứng minh.
nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
mong các bn đừng làm vậy
\(\left\{\begin{matrix}ab=1\left(1\right)\\a^5+b^5=\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)\left(2\right)\end{matrix}\right.\)
Ta có \(\left(a^3+b^3\right)\left(a^2+b^2\right)=\left(a^5+b^3\right)+\left(b^3a^2+a^3b^2\right)=\left(a^5+b^5\right)+ab\left(a+b\right)\)(3)
Thay (1) vào (3)--> thay vào (2) => dpcm
Đặt \(\frac{x}{z}=\frac{z}{y}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=zk\\z=yk\end{cases}}\)
\(\Rightarrow\frac{x^2+z^2}{z^2+y^2}=\frac{z^2k^2+z^2}{y^2k^2+y^2}=\frac{z^2\left(k^2+1\right)}{y^2\left(k^2+1\right)}=\frac{z^2}{y^2}=\frac{y^2k^2}{y^2}=k^2\left(1\right)\)
Và \(\frac{x}{y}=\frac{zk}{y}=\frac{yk^2}{y}=k^2\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\RightarrowĐPCM\)