K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

x+y+z=1 <=> (x+y+z)^3=1

<=> x^3+y^3+z^3+3(x+y)(y+z)(z+x)=1

<=> 1+3(x+y)(y+z)(z+x)=1

<=> 3(x+y)(y+z)(z+x)=0

<=> (x+y)(y+z)(z+x)=0

<=> x+y=0 hoặc y+z=0 hoặc z+x=0

+) x+y=0 <=> x=-y

Thay vào đề ta được: x+y+z=(-y)+y+z=1

<=> z=1

Thay vào x^2+y^2+z^2=1 ta được: (-y)^2+y^2+1^2=1

<=> 2y^2=0 <=> y=0=x

x+y^2+z^3=0+0^2+1^3=1

Tương tự với 2 trường hợp còn lại ta có đpcm

18 tháng 2 2017

\(\left\{\begin{matrix}ab=1\left(1\right)\\a^5+b^5=\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)\left(2\right)\end{matrix}\right.\)

Ta có \(\left(a^3+b^3\right)\left(a^2+b^2\right)=\left(a^5+b^3\right)+\left(b^3a^2+a^3b^2\right)=\left(a^5+b^5\right)+ab\left(a+b\right)\)(3)

Thay (1) vào (3)--> thay vào (2) => dpcm

21 tháng 2 2017

tui bt lm 2 bài đó lun rùi,hihi thứ 5 đem cho hen. Đc hk???lolang