căn 16b + 2 căn 40b - 3 căn 90b
mọi người giúp mik với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(7\sqrt{12}+\frac{1}{3}\sqrt{27}-\sqrt{75}\)
\(=14\sqrt{3}+\sqrt{3}-5\sqrt{3}\)
\(=10\sqrt{3}\)
b)
\(\left(2\sqrt{20}+\sqrt{125}-3\sqrt{80}\right):5\)
\(=\left(4\sqrt{5}+5\sqrt{5}-12\sqrt{5}\right):5\)
\(=-3\sqrt{5}:5\)
\(=\frac{-3\sqrt{5}}{5}\)
c)
\(3\sqrt{12a}-5\sqrt{3a}+\sqrt{48a}\)
\(=6\sqrt{3a}-5\sqrt{3a}+4\sqrt{3a}\)
\(=5\sqrt{3a}\)
\(1\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
\(=1\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(1+3\sqrt{2}-\sqrt{6}-\sqrt{3}\right)\)
\(=1\left(\sqrt{6}+1\right)\left(2\sqrt{6}-2\right)\)
\(=2\left(\sqrt{6}-1\right)\left(\sqrt{6}+1\right)=10\)
Cứ nhân lần lược vào rồi rút gọn sẽ được như trên
Bài 1:
\(\sqrt{27a^2}=3a\sqrt{3}\)
Bài 2:
\(\dfrac{2}{3}\sqrt{3xy}=\sqrt{3xy\cdot\dfrac{4}{9}}=\sqrt{\dfrac{4}{3}xy}\)
Bài 3:
\(=4\sqrt{b}+2\cdot2\sqrt{10b}-3\cdot3\sqrt{10b}=4\sqrt{b}-5\sqrt{10b}\)
d: Ta có: \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}\)
\(=\dfrac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{11}+1-\sqrt{11}+1}{\sqrt{2}}\)
\(=\sqrt{2}\)
Xin lỗi ạ. Tại không giỏi đánh máy. Vậy bỏ câu này đi ạ. Chị giải câu kia giúp e nhé
\(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2\)
\(\Rightarrow\sqrt{37}-\sqrt{15}>2\)
Ta có: \(\sqrt{37}>\sqrt{36}\)
\(-\sqrt{15}>-\sqrt{16}\)
Do đó: \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=2\)
\(a,=5\sqrt{2}-3\sqrt{2}+6\sqrt{2}=8\sqrt{2}\\ b,=\dfrac{5\sqrt{3}}{3}-\dfrac{2\left(\sqrt{3}-1\right)}{2}=\dfrac{5\sqrt{3}}{3}-\sqrt{3}+1=\dfrac{5\sqrt{3}-3\sqrt{3}+3}{3}=\dfrac{2\sqrt{3}+3}{3}\)
\(2,\\ a,\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(x\ge1\right)\\ \Leftrightarrow2\sqrt{x-1}+3\sqrt{x-1}-5\sqrt{x-1}=7\\ \Leftrightarrow0\sqrt{x-1}=7\Leftrightarrow x\in\varnothing\\ b,\sqrt{2x^2-3}=4\left(x\le-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\le x\right)\\ \Leftrightarrow2x^2-3=16\\ \Leftrightarrow x^2=\dfrac{19}{2}\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)
\(1,\\ A=\sqrt{5+4x}+\sqrt{7-3x}\\ ĐKXĐ:\left\{{}\begin{matrix}5+4x\ge0\\7-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{5}{4}\\x\le\dfrac{7}{3}\end{matrix}\right.\)
\(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\\ =4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}\\ =4\sqrt{b}-5\sqrt{10b}=\sqrt{b}\left(4-5\sqrt{10}\right)\)
\(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\left(đk:x\ge0\right)\)
\(=4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}\)
\(=4\sqrt{b}-5\sqrt{10b}\)