1. Cho hệ PT : x - y =m ; mx + y = 1
a, Chứng tỏ hệ PT luôn có nghiệm
b, Tìm giá trị của m để hệ PT có nghiệm là một điểm thuộc góc phần tư thứ I
2. Viết PT đường thẳng (d) : y = ax + b biết (d) đi qua 2 điểm A và B :
a, A(3;2) và B(-1;-6)
b, A(3;0) và B(0;-6)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay m=2 vào HPT ta có:
\(\left\{{}\begin{matrix}\left(2-1\right)x-2y=6-1\\2x-y=2+5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\-3y=3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
Vậy HPT có nghiemj (x;y) = (3;-11)
a: x+my=1 và -mx+y=m
Khi m=2 thì x+2y=1 và -2x+y=2
=>x=-3/5; y=4/5
b: 1/-m<>m/1
nên hệ luôn có nghiệm duy nhất
c: x+my=1 và -mx+y=m
=>x=1-my và -m(1-my)+y=m
=>x=1-my và -m+m^2y+y=m
=>x=1-my và y(m^2+1)=-2m
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-2m}{m^2+1}\\x=1-\dfrac{-2m^2}{m^2+1}=\dfrac{m^2+1+2m^2}{m^2+1}=\dfrac{3m^2+1}{m^2+1}\end{matrix}\right.\)
x<1; y<1
=>\(\left\{{}\begin{matrix}\dfrac{-2m}{m^2+1}-1< 0\\\dfrac{3m^2+1-m^2-1}{m^2+1}< 0\end{matrix}\right.\)
=>-2m-m^2-1<0 và 2m^2<0
=>\(m\in\varnothing\)
a) Thay m=2 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=3\\x-2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=5+2y=5+2\cdot\left(-1\right)=3\end{matrix}\right.\)
Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là (x,y)=(3;-1)
\(x-y=2\Rightarrow y=x-2\). Thay vào pt đầu tiên, ta có:
\(\left(m-1\right)x+2\left(x-2\right)=m+1\)
\(\Leftrightarrow\left(m+1\right)x=m+5\)
Ta thấy \(m\) không thể bằng -1 được vì khi đó \(m+5=0\Leftrightarrow m=-5\), trong khi \(m\) không thể mang 2 giá trị cùng một lúc. Vì vậy, \(m\ne-1\). \(\Rightarrow x=\dfrac{m+5}{m+1}\)
\(\Rightarrow y=x-2=\dfrac{m+5}{m+1}-2\) \(=\dfrac{3-m}{m+1}\).
Từ đó, ta có \(xy=\dfrac{\left(m+5\right)\left(3-m\right)}{\left(m+1\right)^2}\).
Rõ ràng \(\left(m+1\right)^2>0\) nên để \(xy>0\) thì \(\left(m+5\right)\left(3-m\right)>0\) \(\Leftrightarrow-5< m< 3\)
Kết luận: Để hpt đã cho có nghiệm duy nhất \(x,y\) thỏa mãn ycbt thì\(-5< m< 3\) và \(m\ne-1\)
\(2)mx^2-2\left(m-1\right)x+m-1=0\)
Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow m=1\)
Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{matrix}\right.\)
a) Khi m = -1 hệ \(\Leftrightarrow\left\{{}\begin{matrix}-2x+y=-7\\x-2y=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-2x+y=-7\\2x-4y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-9\\2x-4y=-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=5\end{matrix}\right.\)
b) HPT có nghiệm duy nhất \(\Leftrightarrow\)\(m\ne2\)
Hệ \(\Leftrightarrow\left\{{}\begin{matrix}mx-x+y=3m-4\\x+my-y=m\end{matrix}\right.\)
\(\Rightarrow mx+my=4m-4\)
\(\Leftrightarrow3m=4m-4\Leftrightarrow m=4\)
=>10x+15y=5m và -10x+2y=-2
=>17y=5m-2 và -5x+y=-1
=>y=5/17m-2/17 và 5x-y=1
=>y=5/17m-2/17 và 5x=1+y=5/17m+15/17
=>y=5/17m-2/17 và x=1/17m+5/17
x>0; y>0
=>5m-2>0 và m+5>0
=>m>2/5