cho tam giác ABC cân tại A , góc A nhọn , đường cao BH . Lấy D đối xứng với C qua A
Mọi người vẽ cho mình cái hình với ạ , mình sẽ tick cho các bạn , thank nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Tam giác $ABC$ cân tại $A$ nên phân giác $AD$ đồng thời là đường cao
$\Rightarrow AD\perp DC$. Mà $\widehat{DAC}=\widehat{BAC}:2 =45^0$ nên $\triangle DAC$ vuông cân tại $D$
$\Rightarrow DA=DC(1)$
$D,E$ đối xứng với nhau qua $AC$ nên $AC$ là trung trực của $DE$
$\Rightarrow CD=CE; AD=AE(2)$
Từ $(1); (2)\Rightarrow AD=DC=CE=EA$
$\Rightarrow ADCE$ là hình thoi.
Mà $\widehat{ADC}=90^0$ nên $ADCE$ là hình vuông.
a: Xet ΔABC vuông tại B và ΔAHB vuông tại H có
góc A chung
=>ΔABC đồng dạng với ΔAHB
b: Xét ΔDEC vuông tại D và ΔHEB vuông tại H có
góc DEC=góc HEB
=>ΔDEC đồng dạng với ΔHEB
=>DE/HE=DC/HB=EC/EB
=>DC*EB=HB*EC
c: ED/EH=EC/EB
=>ED/EC=EH/EB
=>ΔEDH đồng dạng với ΔECB
e:
Xét ΔCFB có
BD,CH là đường cao
BD cắt CH tại E
=>E là trực tâm
=>FE vuông góc BC
=>FE//AB
Xét ΔHBA vuông tại H và ΔHFE vuông tại H có
HA=HE
góc HBA=góc HFE
=>ΔHBA=ΔHFE
=>HB=HF
Xét tứ giác BEFA có
BF cắt EA tại trung điểm của mỗi đường
BF vuông góc EA
=>BEFA là hình thoi
a) Xét ΔABC vuông tại B và ΔAHB vuông tại H có
\(\widehat{BAH}\) chung
Do đó: ΔABC\(\sim\)ΔAHB(g-g)
b) Xét ΔCED vuông tại D và ΔBEH vuông tại H có
\(\widehat{CED}=\widehat{BEH}\)(hai góc đối đỉnh)
Do đó: ΔCED\(\sim\)ΔBEH(g-g)
Suy ra: \(\dfrac{CE}{BE}=\dfrac{CD}{BH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(BH\cdot CE=CD\cdot BE\)(Đpcm)
=> ΔΔBCE vuông tại E => HC=BC2CE=BC22ACHC=BC2CE=BC22AC
AH=AC−HC=AC−BC22AC=2AC2−BC22ACAH=AC−HC=AC−BC22AC=2AC2−BC22AC
⇒AHHC=2(ACBC)2−1