Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\widehat{AFH}=90^0\) (góc nt chắn nửa đg tròn) nên \(HF\perp AB\)
Lại có H là trực tâm tam giác ABC nên HF và HC là đường cao tam giác ABC \(\left(HF\perp AB\right)\)
Suy ra C,H,F thẳng hàng hay CF là đường cao tam giác ABC
\(\Delta AFC=\Delta AEB\left(ch-gn\right)\\ \Rightarrow AE=AF\\ \Rightarrow\widehat{AFE}=\widehat{ABC}\left(2\Delta.cân.chung.đỉnh.A\right)\)
Mà 2 góc này ở vị trí đồng vị nên EF//BC
b) \(\widehat{NAB}=\widehat{AFE}=\widehat{ACB}\) nên NA là tiếp tuyến của (O).
Do O, N nằm trên đường trung trực của AB nên A, B đối xứng với nhau qua ON.
Từ đó NB là tiếp tuyến của (O).
c) Do NA là tiếp tuyến của (O) nên \(\Delta NAL\sim\Delta NKA(g.g)\)
\(\Rightarrow\dfrac{NA}{NK}=\dfrac{AL}{KA}=\dfrac{NL}{NA}\Rightarrow\left(\dfrac{AL}{KA}\right)^2=\dfrac{NA}{NK}.\dfrac{NL}{NA}=\dfrac{NL}{NK}\).
Tương tự do NB là tiếp tuyến của (O) nên \(\left(\dfrac{BL}{KB}\right)^2=\dfrac{NL}{NK}\Rightarrow\left(\dfrac{AL}{KA}\right)^2=\left(\dfrac{BL}{KB}\right)^2\Rightarrow\dfrac{AL}{KA}=\dfrac{BL}{KB}\Rightarrow\dfrac{AL}{BL}=\dfrac{KA}{KB}=\dfrac{2R}{KB}\).
Từ đó \(\dfrac{BK.AL}{BL}=2R\) không đổi \(\).
Sửa lại đề là đường tròn (HDS) đi qua một điểm cố định.
Ta có \(\widehat{ASE}=\widehat{EAS}=\widehat{OCA}\) nên tứ giác OECS nội tiếp. Từ đó \(AO.AS=AE.AC=AH.AD\). Suy ra tứ giác OHDS nội tiếp nên đường tròn ngoại tiếp tam giác HDS đi qua O cố định
câu c nè: mik ns ý chính nhé
h bạn kẻ tiếp tuyến tại A
chứng minh đc AO vuông góc vs MN
=> OA vuông góc vs EF
do OA cố định
=> đường thẳng qua A vuông góc vs EF luôn đi qua 1 điểm cố định
do câu a va b bn làm đc rồi nên mik nghĩ bn cx hok giỏi rồi nên mik làm tắt nha
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔABD đồng dạng với ΔACE
=>\(\dfrac{AB}{AC}=\dfrac{AD}{AE}\)
=>\(AB\cdot AE=AD\cdot AC\)(3)
b: Sửa đề: Gọi P là trung điểm của MN.Chứng minh AP vuông góc MN
Xét ΔAMC vuông tại M có MD là đường cao
nên \(AD\cdot AC=AM^2\left(1\right)\)
Xét ΔANB vuông tại N có NE là đường cao
nên \(AE\cdot AB=AN^2\left(2\right)\)
Từ (1) và (2) và (3) suy ra AM=AN
ΔAMN cân tại A
mà AP là đường trung tuyến
nên AP\(\perp\)MN
=> ΔΔBCE vuông tại E => HC=BC2CE=BC22ACHC=BC2CE=BC22AC
AH=AC−HC=AC−BC22AC=2AC2−BC22ACAH=AC−HC=AC−BC22AC=2AC2−BC22AC
⇒AHHC=2(ACBC)2−1